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1. Introduction 

 
The Korea Atomic Energy Research Institute 

(KAERI) uses McCARD [1], a Monte Carlo (MC) 

neutron-photon transport simulation code, as a tool of 

generating a reference solution for a wide range of 

nuclear reactors, and as a neutronics design analysis 

code for a research reactor such as Jordan Research 

Training Reactor (JRTR) [2]. McCARD has been 

equipped with various special features for a 

challengeable large-scale reactor calculation. As a part 

of efficiency-enhancement methods for MC nuclear 

reactor analysis, the B1 theory-augmented MC method 

[3] for the generation of Few Group Constants (FGCs) 

was implemented into McCARD. Reference and branch 

calculations are essential for the tabularization of FGCs 

as a function of state parameters such as burnup, 

soluble boron concentration, and various temperature. 

To automate all procedures for FGC generation, MIG 

(McCARD Input Generator) and MOCHA (McCARD 

Output Converter into Homogenized FGC ASCII file) 

utility codes have been developed [3]. The latest MIG 

code, MIG 1.5, is capable of performing multiple-

correlated sampling to estimate uncertainties of nuclear 

reactor core design parameters by means of a direct 

sampling method (DSM). In this study, multiple-

correlated sampling methods [4], [5], such as the 

Cholesky decomposition method and the LDLT 

decomposition method, are implemented into the MIG 

code, and the numerical results for the applications are 

provided. 

 

2. Direct Sampling Methods and Validation 

 

2.1 Direct Sampling Method 

 

 One can formally define the mean value and 

variance for a tally parameter, Q, as follows: 
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where 
i

kQ denotes the i-th parameter for a k-th sample. 

A covariance between the i-th and j-th parameters, 

cov[ , ]i jQ Q , can be calculated by 
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Suppose that CQ is the covariance matrix defined by 

cov[ , ]i jQ Q  and that a lower triangular matrix B is 

known through the Cholesky decomposition of CQ, 

then we have 

  
T

Q  C B B  (4) 

where T
B is the transpose matrix of B. Then, one can 

obtain a sample set by: 

  
   X X B Z  (5) 

where X  is the mean vector defined by the mean 

values from Eq.(1), and Z is a random normal vector 

calculated directly from a random sampling of the 

standard normal distribution. In this study, Z is 

calculated using the Box-Muller method. If CQ is 

symmetrical but not positive definite, then the Cholesky 

decomposition method will not be valid. In that case of 

a positive semi-definite matrix, LDLT decomposition 

method can be utilized as an alternative method. In the 

LDLT decomposition method, the covariance matrix can 

be expressed by lower-triangular (L) and diagonal (D) 

matrices as below: 

 
T

Q   C L D L                             (6) 

 

The multiple-correlated variables can be generated by 

  ( ) .    1/2
X X L D Z  (7) 

 

The LDLT and Cholesky decomposition modules are 

implemented into the MIG 1.5 code. 

 

2.2 Verification and Validation for Direct Sampling 

Module 

 

To verify the newly implemented LDLT and 

Cholesky decomposition modules, test problems using 

two 3x3 covariance matrices are considered; the 

relevant matrices are as follows: 
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In Table I, covariance values calculated from 106 

samples are presented; the values were obtained using 

the Cholesky and LDLT decomposition modules in the 

MIG code. Here, aij denotes the element in the i-th row, 

the j-th column of the covariance matrix. It is noted that 

the sampled covariance agree well with the reference. 

 

Table I: Comparison of covariance from 106 samples 

generated by MIG with reference 

case Reference 
Sampled covariance  

Cholesky LDLT 

P1 

a11 1.000 1.002 1.002 

a12 0.000 ~0.000 ~0.000 

a13 0.000 ~0.000 ~0.000 

P2 

a11 1.000 1.002 1.002 

a12 0.200 0.199 0.199 

a23 -0.200 -0.199 -0.208 

 

 

3. Application of Direct Sampling Method by MIG 

 

3.1 Uncertainty Propagation Analysis in Two-Step 

Procedure Based on the MC method 
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Fig. 1. Distribution of critical boron concentration from the 

10,000 samples by two-group constants input sets for YGN4  

 

Recently, there have been various studies [5,6] 

conducted that utilize DSM calculations that are based 

on a two-step procedure code system. In the study study 

of the McCARD/MASTER two-step code system [5], 

the authors prepare the covariance matrix between the 

FGCs of any pair of fuel assemblies (FAs) comprising 

the core. Using the covariance matrix, MIG can 

produce FA FGCs input sets by random multiple-

correlated sampling. Using the sampled FA FGCs input 

sets, MASTER can perform direct sampling core 

calculations. Figure 1 shows a distribution of critical 

boron concentration (CBC) measured in ppm from a 

total of 1,000 MASTER computations with 1,000 

randomly sampled two-group constant sets for 

Yonggwang Nuclear Unit 4 (YGN4) PWR core, 

generated by MIG code [5]. 

 

3.2 Estimation of Axial Peaking Factor Uncertainties 

from Covariance Matrix for Fuel Mass Distribution 

 

The DSM method was utilized as a way to quantify 

uncertainties of nuclear design parameters such as 

peaking factors, power distribution, and keff through 

MC calculations. At KAERI, the Fuel Design Team 

provide axial uranium mass distributions, which they 

obtained from raw fuel rod samples and in which they 

used a new-type fuel rod [7]. Such a distribution is 

typically caused by tolerance errors from the 

manufacturing process for mixed metallic-uranium 

pellets. Using Eqs. (2) and (3), the covariance matrix 

can be calculated with the samples. Regarding the 

correlation coefficients matrix for an axial metallic-

uranium mass distribution [8] shown in Fig. 2, one can 

see that the mass of a fuel has a strong correlation with 

the axial position of the fuel. MIG can generate the 

input sets from the covariance matrix. Using the 

sampled input sets, the axial peaking factor and keff can 

be obtained.  

 
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 1. 0 0. 5 -0. 5 -0. 4 -0. 4 -0. 5 -0. 4 -0. 5 -0. 5 -0. 4 -0. 2 -0. 4 -0. 4 -0. 5 -0. 4 -0. 4 -0. 4 -0. 5 -0. 3 0. 2 0. 6

2 0. 5 1. 0 0. 2 0. 3 0. 2 0. 0 0. 1 0. 0 0. 1 0. 0 -0. 1 -0. 2 -0. 5 -0. 2 -0. 6 -0. 4 -0. 4 -0. 6 -0. 7 -0. 4 0. 0

3 -0. 5 0. 2 1. 0 0. 8 0. 7 0. 5 0. 5 0. 6 0. 5 0. 2 0. 1 0. 0 -0. 1 0. 0 -0. 3 -0. 1 -0. 1 0. 0 -0. 2 -0. 4 -0. 5

4 -0. 4 0. 3 0. 8 1. 0 0. 8 0. 6 0. 4 0. 5 0. 4 0. 3 0. 0 0. 0 -0. 2 -0. 1 -0. 4 -0. 2 -0. 2 -0. 2 -0. 3 -0. 4 -0. 3

5 -0. 4 0. 2 0. 7 0. 8 1. 0 0. 7 0. 6 0. 7 0. 4 0. 3 0. 1 0. 0 0. 0 0. 0 -0. 2 0. 0 -0. 1 0. 0 -0. 5 -0. 6 -0. 5

6 -0. 5 0. 0 0. 5 0. 6 0. 7 1. 0 0. 3 0. 6 0. 3 0. 3 0. 0 0. 1 -0. 1 0. 2 0. 1 0. 1 -0. 1 0. 1 -0. 1 -0. 4 -0. 5

7 -0. 4 0. 1 0. 5 0. 4 0. 6 0. 3 1. 0 0. 6 0. 2 0. 0 0. 0 0. 0 0. 3 0. 4 0. 0 0. 1 0. 3 0. 1 -0. 4 -0. 7 -0. 5

8 -0. 5 0. 0 0. 6 0. 5 0. 7 0. 6 0. 6 1. 0 0. 4 0. 3 0. 1 0. 1 0. 3 0. 2 0. 0 0. 1 0. 2 0. 2 -0. 4 -0. 6 -0. 7

9 -0. 5 0. 1 0. 5 0. 4 0. 4 0. 3 0. 2 0. 4 1. 0 0. 8 0. 7 0. 5 -0. 2 -0. 1 -0. 1 -0. 2 -0. 2 0. 2 -0. 2 -0. 4 -0. 5

10 -0. 4 0. 0 0. 2 0. 3 0. 3 0. 3 0. 0 0. 3 0. 8 1. 0 0. 7 0. 6 -0. 1 0. 1 0. 1 -0. 1 -0. 1 0. 1 -0. 2 -0. 4 -0. 4

11 -0. 2 -0. 1 0. 1 0. 0 0. 1 0. 0 0. 0 0. 1 0. 7 0. 7 1. 0 0. 5 -0. 1 0. 1 0. 1 0. 1 0. 1 0. 3 -0. 3 -0. 4 -0. 4

12 -0. 4 -0. 2 0. 0 0. 0 0. 0 0. 1 0. 0 0. 1 0. 5 0. 6 0. 5 1. 0 0. 3 0. 2 0. 2 0. 1 0. 0 0. 0 0. 0 -0. 1 -0. 1

13 -0. 4 -0. 5 -0. 1 -0. 2 0. 0 -0. 1 0. 3 0. 3 -0. 2 -0. 1 -0. 1 0. 3 1. 0 0. 4 0. 3 0. 4 0. 5 0. 3 0. 2 0. 0 -0. 2

14 -0. 5 -0. 2 0. 0 -0. 1 0. 0 0. 2 0. 4 0. 2 -0. 1 0. 1 0. 1 0. 2 0. 4 1. 0 0. 4 0. 5 0. 6 0. 3 0. 1 -0. 3 -0. 4

15 -0. 4 -0. 6 -0. 3 -0. 4 -0. 2 0. 1 0. 0 0. 0 -0. 1 0. 1 0. 1 0. 2 0. 3 0. 4 1. 0 0. 8 0. 7 0. 5 0. 3 0. 0 -0. 4

16 -0. 4 -0. 4 -0. 1 -0. 2 0. 0 0. 1 0. 1 0. 1 -0. 2 -0. 1 0. 1 0. 1 0. 4 0. 5 0. 8 1. 0 0. 8 0. 6 0. 1 -0. 2 -0. 5

17 -0. 4 -0. 4 -0. 1 -0. 2 -0. 1 -0. 1 0. 3 0. 2 -0. 2 -0. 1 0. 1 0. 0 0. 5 0. 6 0. 7 0. 8 1. 0 0. 6 0. 1 -0. 3 -0. 5

18 -0. 5 -0. 6 0. 0 -0. 2 0. 0 0. 1 0. 1 0. 2 0. 2 0. 1 0. 3 0. 0 0. 3 0. 3 0. 5 0. 6 0. 6 1. 0 0. 3 -0. 1 -0. 6

19 -0. 3 -0. 7 -0. 2 -0. 3 -0. 5 -0. 1 -0. 4 -0. 4 -0. 2 -0. 2 -0. 3 0. 0 0. 2 0. 1 0. 3 0. 1 0. 1 0. 3 1. 0 0. 8 0. 2

20 0. 2 -0. 4 -0. 4 -0. 4 -0. 6 -0. 4 -0. 7 -0. 6 -0. 4 -0. 4 -0. 4 -0. 1 0. 0 -0. 3 0. 0 -0. 2 -0. 3 -0. 1 0. 8 1. 0 0. 7

21 0. 6 0. 0 -0. 5 -0. 3 -0. 5 -0. 5 -0. 5 -0. 7 -0. 5 -0. 4 -0. 4 -0. 1 -0. 2 -0. 4 -0. 4 -0. 5 -0. 5 -0. 6 0. 2 0. 7 1. 0  
1.0 0.5 0.0 -0.5 -1.0  

Fig. 2. Correlation Coefficients Matrix of Axial Metallic-

Uranium Mass Distribution for New-type Fuel Pin 

 

3.3 Estimation of kinf Uncertainties by the Tolerance 

Errors of the Geometric Data 

 

MIG can perform an uncertainty analysis for a design 

parameter according to the tolerance error of a 

geometric value provided by vendors. Figure 3 shows a 

1/6 symmetric FA of a small modular reactor (SMR) in 

operation on ice-breakers [9]. The FA consists of a 
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bundle of fuel pins, burnable absorber rods, zirconium 

rods, and a cylindrical zirconium alloy tube. The whole 

of the FA can be assembled within the core by screwing 

tightly. Because the screwing process may causes the 

errors with regard to the rotation angle, it is necessary 

for a vendor to provide its tolerance errors. As shown in 

Fig. 3, the fuel rods may be shifted by the rotation angle. 

In order to generate input sets for a shifted FA, it is 

necessary to know the center locations of the shifted 

fuel rods and surface equations. Equation (10) 

represents the center location (xnew,ynew) of a fuel rod 

shifted by a rotation angle θ. 

 

cos  -sin

sin   cos

orgnew

new org

xx

y y

 

 

    
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                (10) 

 

org orga x b y cz d                          (11) 

 

Equation (11) represents the equation of a plane surface, 

which is used in the common MC code. In the case of a 

rotation in the x-y plane, the equation of the plane 

surface and the coefficients of the shifted surface, anew 

and bnew, can be calculated by 

 

,new newa x b y cz d                          (12) 
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where “org” and “new” denote “original” and “shifted” 

(value), respectively. 

Fuel
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Fig. 3. Shift of fuel rods in a 1/6 symmetric FA of an ice-

breaker SMR by the tolerance errors of rotation angle 

 

Figure 4 shows the distribution of kinf from 60 samples 

that were generated under the assumption that the 

standard deviation of the rotation angle is 10 degrees. 

 

3. Conclusions 

 

 In this study, the LDLT and Cholesky decomposition 

modules for DSM calculations were implemented into 

the latest MIG code, MIG 1.5, and verified by means of 

test problems as shown in Table I. The modules were 

used to quantify uncertainties of nuclear design 

parameters such peaking factors, power distribution, 

and keff. Owing to the versatility of the multiple-

correlated variables sampling capability of the MIG 

code, one can usefully utilize for a variety of 

applications, reasons, or computer software. 
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Fig. 4. Distribution of kinf from the 60 samples which are 

generated by the tolerance errors of rotation angle  
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