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1. Introduction 

 
There have been increasing demands on more precise 

simulation of nuclear reactors, which raised interests on 

the massive parallelization of reactor analysis methods.  

There have been two approaches for achieving massive 

parallelism so far. First approach is to use thousands of 

CPU processors paired with high speed interconnects 

and apply fine-grain domain decomposition. MPACT 

[1] first demonstrated massive parallelization on TITAN 

supercomputer, and DeCART [2] and STREAM [3] 

also presented the application of similar approaches. 

Second approach is to exploit the massive processing 

power of graphics processing units (GPU) which are at 

the forefront of heterogeneous computing. OpenMOC 

[4] proved the high efficiency of ray tracing calculation 

on GPUs, and nTRACER [5, 6, 7] has also developed 

algorithms for GPUs. 

The two approaches have pros and cons. CPU-based 

massive parallelization is usually easier to implement on 

existing codes, while migrating the codes to GPUs often 

requires rewriting many if not all parts of the codes. 

Also, GPUs are less versatile than CPUs, so dedicated 

tuning works are necessary to achieve high performance 

on GPUs. But the former is often not feasible in terms 

of economics. Even though there exist such systems, 

occupying large number of CPUs would be unavailable 

since the system will be shared with others. However, 

GPUs are power-efficient and cost-effective, and can 

provide massive computing power with only a few units. 

This paper introduces GPU parallelization strategies 

of nTRACER and its performance. The strategies used 

in each component of nTRACER – ray tracing, CMFD 

acceleration, and axial sweep – are introduced briefly 

along with the bibliographies where the details can be 

found. Also, performance assessments with 2D and 3D 

core problems are presented. It is expected to facilitate 

the utilization of GPUs in reactor physics, which, we 

believe, will be the mainstream in the future. 

 

2. Theoretical Backgrounds 

 

In this paper, only a brief introduction of the methods 

is presented. Full details of the implementations will be 

explained in a compiled journal paper, or can be found 

in part from [4, 5, 6, 7, 8]. 

 

2.1 Ray Tracing 

 

A GPU-accelerated ray tracing algorithm for isotropic 

scattering cases was first proposed by OpenMOC [4] 

and further extended by nTRACER [5] to anisotropic 

scattering cases with more consideration on utilization 

of CPU – GPU concurrency and mixed precision. The 

sweep algorithm for isotropic scattering case used in 

nTRACER is illustrated in Figure 1. Fine-grain thread-

level parallelism is applied to group sweeps, and coarse-

grain warp-level parallelism is exposed to ray sweeps. 

The GPU threading scheme is conceptually illustrated in 

Figure 2. The colors indicate rotational rays. 

 

FOR G DO Group Block Sweep 

   FOR r PARALLEL DO Rotational Ray Sweep 

      FOR l ∈ r DO Pin Ray Sweep 

         FOR g ∈ G PARALLEL DO Group Sweep 

            FOR 𝑝 DO Polar Angle Sweep 

               Accumulate pin incoming current on register 

            END DO 

            Atomically accumulate pin incoming current 

         END DO 

         FOR s ∈ l DO Ray Segment Sweep 

            FOR g ∈ G PARALLEL DO Group Sweep 

               FOR 𝑝 DO Polar Angle Sweep 

                  Save outgoing track angular flux on cache 

                  Accumulate angular flux change on register 

               END DO 

            Atomically accumulate region scalar flux 

            END PARALLEL DO 

         END DO 

         FOR g ∈ G PARALLEL DO Group Sweep 

            FOR 𝑝 DO Polar Angle Sweep 

               Accumulate pin outgoing current on register 

            END DO 

            Atomically accumulate pin outgoing current 

         END PARALLEL DO 

      END DO 

   END PARALLEL DO 

END DO 

Figure 1. Parallel ray tracing algorithm. 

 

Figure 2. Ray tracing threading scheme. 
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The accelerated part in entire MOC sweep process is 

only the ray tracing part. Cross section reconstruction 

and source update are performed on CPUs with double 

precision arithmetic, and the ray tracing is performed on 

GPUs with single precision. To enable concurrent run of 

CPUs and GPUs, the energy groups are partitioned into 

blocks; that is, mixed precision strategy based on task 

parallelism is employed. The procedure is described in 

Figure 3. 

 

 

Figure 3. CPU – GPU concurrency diagram. 

2.2 CMFD Acceleration 

 

Assessment of linear system solvers and investigation of 

the best-suited algorithms on GPU architectures were 

done through the previous researches of our group [6, 7]. 

The conclusions of the researches were as follows: 

 

(1) Sliced ELLPACK (SELL) matrix format is better 

than Compressed Sparse Row (CSR) format for 

highly structured migration matrices. 

(2) For Krylov methods, Sparse Approximate Inverse 

(SPAI) type preconditioner outperforms Incomplete 

LU (ILU) type preconditioner. 

(3) By neglecting the scattering terms of the migration 

matrix in SPAI preconditioning, preconditioner set-

up time reduces significantly, while increase in the 

number of inner iterations remains marginal. 

(4) Block Successive Over-relaxation (BSOR) with 

red-black ordering shows better performance than 

BiCGSTAB. 

(5) Iterative refinement technique performs well within 

the CMFD power iteration framework. 

 

We used linear algebra libraries in CUDA toolkit for 

CMFD solver implementation to ensure high degree of 

optimization. However, due to the lack of support for 

SELL format in the libraries, current implementation of 

GPU-based CMFD solver uses CSR format. 

 

2.3 Axial Solver 

 

nTRACER has established an axial transport solver for 

stability enhancement [8]. It employs subplane concept 

axially instead of resorting to conventional polynomial 

expansion. The iteration scheme is depicted in Figure 4 

and explained below. 

 

 

Figure 4. Axial sweeping scheme. 

(1) Through the CMFD power iteration, coarse mesh 

average flux is obtained. 

(2) The coarse mesh average flux is fed to subsequent 

fine meshes. Then, it is multiplied by the flux form 

function obtained from previous axial sweep. 

(3) Using the reconstructed fine mesh flux, fine mesh 

fission source is evaluated. 

(4) Perform fixed source iteration with axial sweeper a 

few times and obtain new flux form function. 

 

Since the sweeper employs method of characteristics, 

the GPU acceleration algorithm is essentially same with 

Figure 1, except for the definition of the rays. And as 

well, the sweeping is done in single precision. The cross 

sections are supplied by double precision on CPUs, but 

source update is done on GPU with single precision. 

 

2.4 Distributed Memory Parallelism 

 

Basically, the GPU calculation module employs planar 

domain decomposition strategy; each GPU is assigned 

to an MOC plane. However, usual GPU clusters come 

out in the form that multiple GPUs are embedded in a 

shared memory node. Thus, each MPI process is bound 

to a GPU and multiple processes are launched in each 

node, as illustrated in Figure 5. Local rank of a process 

inside the shared memory node is found by defining a 

local communicator using MPI_COMM_TYPE_SPLIT 

routine with parameter MPI_COMM_TYPE_SHARED 

as the argument. 

 

 

Figure 5. Distributed memory parallelization topology. 
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3. Results and Discussion 

 

Runtime and accuracy comparison between CPU-

based and GPU-accelerated solvers for APR1400 2D 

and 3D core cases are presented. The CPU-based solver 

is the default Gauss-Seidel solver in nTRACER. For 

CMFD calculation on CPU, Intel Math Kernel Library 

was used. The specifications of the clusters used for 

calculations are listed in Table 1. Top is the Soochiro 3 

CPU cluster in SNU, and bottom is a newly constructed 

GPU cluster equipped with commercial GPUs that are 

specialized for single precision arithmetic. 

Table 1. Cluster specifications. 

# of Nodes 27 

CPU 
2 × Intel Xeon E5-2640 v3 

16 Cores, 2.8 GHz (Boost) 

Memory 8 × 16GB DDR4 RAM 

Interconnect 2Gbps Ethernet 

Compiler Intel Fortran 14.0.3 

 

# of Nodes 4 

CPU 
2 × Intel Xeon E5-2630 v4 

20 Cores, 2.4 GHz (Boost) 

GPU 4 × NVIDIA GeForce GTX 1080 

Memory 8 × 16GB DDR4 RAM 

Interconnect 1Gbps Ethernet 

Compiler PGI Fortran 17.10 

 

The nTRACER model of APR1400 [9] was reduced 

to half-3D with 16 MOC planes due to the restriction of 

the current GPU cluster. Thus, half-3D case requires 16 

nodes or 16 GPUs. In addition, 2D core was solved for 

the reference to analyze the overheads coming from the 

3D extension. 2D case uses single node or single GPU. 

 

3.1 2D Quarter Core 

 

The problem contains 47 energy groups, 20,032 pins, 

1,683,860 flat source regions, and 259,628,613 ray 

segments. 4 polar angles were used. 4 MOC outers were 

required to converge, and each MOC outer consists of 4 

transport sweeps; 2 sweeps on entire 47 groups, and the 

other 2 sweeps on 24 thermal groups. Table 2 contains 

the calculation time of each component and the speedup 

ratio. The eigenvalues matched exactly (1.00289). 

Table 2. 2D core calculation time summary. 

Calculation CPU GPU Speedup 

Subgroup 

(Ray Tracing) 

257.4s 

(253.1s) 

13.2s 

(6.9s) 

19.5 

(36.7) 

MOC 1218.4s 95.1s 12.8 

CMFD 

(Ax = b) 

31.0s 

(24.2s) 

27.1s 

(4.5s) 

1.1 

(5.4) 

Total 1506.8s 135.4s 11.1 

The ray tracing time in MOC cannot be separated due 

to the concurrency, but its high efficiency can be seen 

through the speedup ratio of ray tracing calculation in 

subgroup calculation. In the meantime, the speedup in 

CMFD is marginal, though the speedup in linear system 

solving time is significant. The rest of the CMFD time is 

composed of cell homogenization and linear system set-

up which are performed on CPU. The problem is that 

the generation of a CSR matrix is difficult to parallelize 

and is currently being done with single thread. Also, the 

CPU solver employs group-wise solution in which the 

matrix of each group can be set-up in parallel, while the 

GPU solver employs whole-group solution which uses a 

single large matrix. Slower CPU clock in GPU cluster 

and the PGI compiler being less efficient than the Intel 

compiler also serve as the causes. 

 

3.2 Half-3D Quarter Core 

 

Table 3 shows the computing time result of the 3D case, 

with all the conditions same as the 2D case. The axial 

solver condition is as follows: 0.5cm subplane mesh, 5 

polar angles, 10 iterations per sweep, and 2 sweeps per 

CMFD. The eigenvalues were same as well (0.99894). 

Table 3. 3D core calculation time summary. 

Calculation CPU GPU Speedup 

Subgroup 275.9s 17.5s 15.8 

MOC 1561.7s 118.0s 13.2 

CMFD 

(Initialize) 

(Ax = b) 

57.7s 

(10.9s) 

(27.8s) 

53.5s 

(25.8s) 

(13.5s) 

1.1 

(0.4) 

(2.1) 

Axial 

(Kernel) 

197.6s 

(124.1s) 

63.6s 

(15.7s) 

3.1 

(7.9) 

Total 2092.9s 252.6s 8.3 

 

The overall acceleration efficiency in 3D calculation 

was reduced, majorly due to the hardware restrictions.  

In 2D, all CPU cores were used by 1 GPU, but in 3D, 

they are shared by 4 GPUs. It results in more time spent 

for MOC source calculation and CMFD homogenization 

which are done on CPU side. Also, about 1/3 of CMFD 

and 3/4 of axial solver time is spent for communication, 

which is caused by the use of slow Ethernet network. 

The detrimental factors apart from the hardware are: 1) 

axial sweep occurs in the middle of the CMFD power 

iteration, which requires regenerating the linear system, 

and 2) CMFD routines are under-optimized. Be that as 

it may, the overall speedup ratio is considerable, given 

the amount of computation resources used in each case. 

Next, the validity of mixed precision strategy was 

examined. The solutions obtained at full convergence (9 

MOC outers) were used. Figure 6 shows the integrated 

pin power difference between double precision CPU 

solver and mixed precision GPU solver, and Figure 7 

shows the integrated axial power difference. It can be 
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seen that the difference in the power only occurs at the 

last significant digit (10-4), though the degree of error is 

slightly larger in the axial power than in the pin power. 

Therefore, we conclude that the mixed precision scheme 

is valid and also effective. 

 

Figure 6. Absolute difference of integrated pin power. 

 

Figure 7. Absolute difference of integrated axial power. 

4. Conclusion 

 

GPU acceleration capability has been implemented in 

nTRACER. The modules are still under development, 

so there exist yet under-optimized routines, such as the 

host set-up routines of CMFD solver. However, with the 

significant rates of speedup in hotspots, total runtime 

reduction was remarkable as well. Also, the validity of 

mixed precision techniques were verified, which enables 

the use of commercial GPUs in scientific calculation. 

Still, there exist limitations in 3D calculation, though 

they are mostly contributed by the hardware. First is the 

slowdown of host routines that comes from sharing the 

CPU resources. It is inevitable in the systems where 

multiple GPUs are contained in a single computing node, 

and the only way to resolve this problem is to optimize 

the CPU routines and try to offload more calculations 

on GPUs. Second is the communication load in CMFD 

and axial calculation. It can be somehow mitigated by 

optimizing CMFD algorithms in the way that minimizes 

communications such as applying local/global iteration 

strategy. However, the best way to overcome it is to use 

high performance networks such as Infiniband. 

Remaining works are as follows: 1) incorporation of 

thermal-hydraulics feedback calculation to perform HFP 

calculations, 2) incorporation of depletion calculation to 

perform core follow calculations, and 3) CMFD routine 

optimizations. Finishing the tasks will make it available 

to complete a whole-core cycle depletion within 2 hours 

on a moderate-sized GPU cluster. 
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