
Transactions of the Korean Nuclear Society Autumn Meeting

Yeosu, Korea, October 25-26, 2018

Preliminary Performance Assessment of GPU Acceleration Module in nTRACER

Namjae Choi, Junsu Kang, Han Gyu Joo*

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
*Corresponding author: joohan@snu.ac.kr

1. Introduction

There have been increasing demands on more precise

simulation of nuclear reactors, which raised interests on

the massive parallelization of reactor analysis methods.

There have been two approaches for achieving massive

parallelism so far. First approach is to use thousands of

CPU processors paired with high speed interconnects

and apply fine-grain domain decomposition. MPACT

[1] first demonstrated massive parallelization on TITAN

supercomputer, and DeCART [2] and STREAM [3]

also presented the application of similar approaches.

Second approach is to exploit the massive processing

power of graphics processing units (GPU) which are at

the forefront of heterogeneous computing. OpenMOC

[4] proved the high efficiency of ray tracing calculation

on GPUs, and nTRACER [5, 6, 7] has also developed

algorithms for GPUs.

The two approaches have pros and cons. CPU-based

massive parallelization is usually easier to implement on

existing codes, while migrating the codes to GPUs often

requires rewriting many if not all parts of the codes.

Also, GPUs are less versatile than CPUs, so dedicated

tuning works are necessary to achieve high performance

on GPUs. But the former is often not feasible in terms

of economics. Even though there exist such systems,

occupying large number of CPUs would be unavailable

since the system will be shared with others. However,

GPUs are power-efficient and cost-effective, and can

provide massive computing power with only a few units.

This paper introduces GPU parallelization strategies

of nTRACER and its performance. The strategies used

in each component of nTRACER – ray tracing, CMFD

acceleration, and axial sweep – are introduced briefly

along with the bibliographies where the details can be

found. Also, performance assessments with 2D and 3D

core problems are presented. It is expected to facilitate

the utilization of GPUs in reactor physics, which, we

believe, will be the mainstream in the future.

2. Theoretical Backgrounds

In this paper, only a brief introduction of the methods

is presented. Full details of the implementations will be

explained in a compiled journal paper, or can be found

in part from [4, 5, 6, 7, 8].

2.1 Ray Tracing

A GPU-accelerated ray tracing algorithm for isotropic

scattering cases was first proposed by OpenMOC [4]

and further extended by nTRACER [5] to anisotropic

scattering cases with more consideration on utilization

of CPU – GPU concurrency and mixed precision. The

sweep algorithm for isotropic scattering case used in

nTRACER is illustrated in Figure 1. Fine-grain thread-

level parallelism is applied to group sweeps, and coarse-

grain warp-level parallelism is exposed to ray sweeps.

The GPU threading scheme is conceptually illustrated in

Figure 2. The colors indicate rotational rays.

FOR G DO Group Block Sweep

 FOR r PARALLEL DO Rotational Ray Sweep

 FOR l ∈ r DO Pin Ray Sweep

 FOR g ∈ G PARALLEL DO Group Sweep

 FOR 𝑝 DO Polar Angle Sweep

 Accumulate pin incoming current on register

 END DO

 Atomically accumulate pin incoming current

 END DO

 FOR s ∈ l DO Ray Segment Sweep

 FOR g ∈ G PARALLEL DO Group Sweep

 FOR 𝑝 DO Polar Angle Sweep

 Save outgoing track angular flux on cache

 Accumulate angular flux change on register

 END DO

 Atomically accumulate region scalar flux

 END PARALLEL DO

 END DO

 FOR g ∈ G PARALLEL DO Group Sweep

 FOR 𝑝 DO Polar Angle Sweep

 Accumulate pin outgoing current on register

 END DO

 Atomically accumulate pin outgoing current

 END PARALLEL DO

 END DO

 END PARALLEL DO

END DO

Figure 1. Parallel ray tracing algorithm.

Figure 2. Ray tracing threading scheme.

Transactions of the Korean Nuclear Society Autumn Meeting

Yeosu, Korea, October 25-26, 2018

The accelerated part in entire MOC sweep process is

only the ray tracing part. Cross section reconstruction

and source update are performed on CPUs with double

precision arithmetic, and the ray tracing is performed on

GPUs with single precision. To enable concurrent run of

CPUs and GPUs, the energy groups are partitioned into

blocks; that is, mixed precision strategy based on task

parallelism is employed. The procedure is described in

Figure 3.

Figure 3. CPU – GPU concurrency diagram.

2.2 CMFD Acceleration

Assessment of linear system solvers and investigation of

the best-suited algorithms on GPU architectures were

done through the previous researches of our group [6, 7].

The conclusions of the researches were as follows:

(1) Sliced ELLPACK (SELL) matrix format is better

than Compressed Sparse Row (CSR) format for

highly structured migration matrices.

(2) For Krylov methods, Sparse Approximate Inverse

(SPAI) type preconditioner outperforms Incomplete

LU (ILU) type preconditioner.

(3) By neglecting the scattering terms of the migration

matrix in SPAI preconditioning, preconditioner set-

up time reduces significantly, while increase in the

number of inner iterations remains marginal.

(4) Block Successive Over-relaxation (BSOR) with

red-black ordering shows better performance than

BiCGSTAB.

(5) Iterative refinement technique performs well within

the CMFD power iteration framework.

We used linear algebra libraries in CUDA toolkit for

CMFD solver implementation to ensure high degree of

optimization. However, due to the lack of support for

SELL format in the libraries, current implementation of

GPU-based CMFD solver uses CSR format.

2.3 Axial Solver

nTRACER has established an axial transport solver for

stability enhancement [8]. It employs subplane concept

axially instead of resorting to conventional polynomial

expansion. The iteration scheme is depicted in Figure 4

and explained below.

Figure 4. Axial sweeping scheme.

(1) Through the CMFD power iteration, coarse mesh

average flux is obtained.

(2) The coarse mesh average flux is fed to subsequent

fine meshes. Then, it is multiplied by the flux form

function obtained from previous axial sweep.

(3) Using the reconstructed fine mesh flux, fine mesh

fission source is evaluated.

(4) Perform fixed source iteration with axial sweeper a

few times and obtain new flux form function.

Since the sweeper employs method of characteristics,

the GPU acceleration algorithm is essentially same with

Figure 1, except for the definition of the rays. And as

well, the sweeping is done in single precision. The cross

sections are supplied by double precision on CPUs, but

source update is done on GPU with single precision.

2.4 Distributed Memory Parallelism

Basically, the GPU calculation module employs planar

domain decomposition strategy; each GPU is assigned

to an MOC plane. However, usual GPU clusters come

out in the form that multiple GPUs are embedded in a

shared memory node. Thus, each MPI process is bound

to a GPU and multiple processes are launched in each

node, as illustrated in Figure 5. Local rank of a process

inside the shared memory node is found by defining a

local communicator using MPI_COMM_TYPE_SPLIT

routine with parameter MPI_COMM_TYPE_SHARED

as the argument.

Figure 5. Distributed memory parallelization topology.

Transactions of the Korean Nuclear Society Autumn Meeting

Yeosu, Korea, October 25-26, 2018

3. Results and Discussion

Runtime and accuracy comparison between CPU-

based and GPU-accelerated solvers for APR1400 2D

and 3D core cases are presented. The CPU-based solver

is the default Gauss-Seidel solver in nTRACER. For

CMFD calculation on CPU, Intel Math Kernel Library

was used. The specifications of the clusters used for

calculations are listed in Table 1. Top is the Soochiro 3

CPU cluster in SNU, and bottom is a newly constructed

GPU cluster equipped with commercial GPUs that are

specialized for single precision arithmetic.

Table 1. Cluster specifications.

of Nodes 27

CPU
2 × Intel Xeon E5-2640 v3

16 Cores, 2.8 GHz (Boost)

Memory 8 × 16GB DDR4 RAM

Interconnect 2Gbps Ethernet

Compiler Intel Fortran 14.0.3

of Nodes 4

CPU
2 × Intel Xeon E5-2630 v4

20 Cores, 2.4 GHz (Boost)

GPU 4 × NVIDIA GeForce GTX 1080

Memory 8 × 16GB DDR4 RAM

Interconnect 1Gbps Ethernet

Compiler PGI Fortran 17.10

The nTRACER model of APR1400 [9] was reduced

to half-3D with 16 MOC planes due to the restriction of

the current GPU cluster. Thus, half-3D case requires 16

nodes or 16 GPUs. In addition, 2D core was solved for

the reference to analyze the overheads coming from the

3D extension. 2D case uses single node or single GPU.

3.1 2D Quarter Core

The problem contains 47 energy groups, 20,032 pins,

1,683,860 flat source regions, and 259,628,613 ray

segments. 4 polar angles were used. 4 MOC outers were

required to converge, and each MOC outer consists of 4

transport sweeps; 2 sweeps on entire 47 groups, and the

other 2 sweeps on 24 thermal groups. Table 2 contains

the calculation time of each component and the speedup

ratio. The eigenvalues matched exactly (1.00289).

Table 2. 2D core calculation time summary.

Calculation CPU GPU Speedup

Subgroup

(Ray Tracing)

257.4s

(253.1s)

13.2s

(6.9s)

19.5

(36.7)

MOC 1218.4s 95.1s 12.8

CMFD

(Ax = b)

31.0s

(24.2s)

27.1s

(4.5s)

1.1

(5.4)

Total 1506.8s 135.4s 11.1

The ray tracing time in MOC cannot be separated due

to the concurrency, but its high efficiency can be seen

through the speedup ratio of ray tracing calculation in

subgroup calculation. In the meantime, the speedup in

CMFD is marginal, though the speedup in linear system

solving time is significant. The rest of the CMFD time is

composed of cell homogenization and linear system set-

up which are performed on CPU. The problem is that

the generation of a CSR matrix is difficult to parallelize

and is currently being done with single thread. Also, the

CPU solver employs group-wise solution in which the

matrix of each group can be set-up in parallel, while the

GPU solver employs whole-group solution which uses a

single large matrix. Slower CPU clock in GPU cluster

and the PGI compiler being less efficient than the Intel

compiler also serve as the causes.

3.2 Half-3D Quarter Core

Table 3 shows the computing time result of the 3D case,

with all the conditions same as the 2D case. The axial

solver condition is as follows: 0.5cm subplane mesh, 5

polar angles, 10 iterations per sweep, and 2 sweeps per

CMFD. The eigenvalues were same as well (0.99894).

Table 3. 3D core calculation time summary.

Calculation CPU GPU Speedup

Subgroup 275.9s 17.5s 15.8

MOC 1561.7s 118.0s 13.2

CMFD

(Initialize)

(Ax = b)

57.7s

(10.9s)

(27.8s)

53.5s

(25.8s)

(13.5s)

1.1

(0.4)

(2.1)

Axial

(Kernel)

197.6s

(124.1s)

63.6s

(15.7s)

3.1

(7.9)

Total 2092.9s 252.6s 8.3

The overall acceleration efficiency in 3D calculation

was reduced, majorly due to the hardware restrictions.

In 2D, all CPU cores were used by 1 GPU, but in 3D,

they are shared by 4 GPUs. It results in more time spent

for MOC source calculation and CMFD homogenization

which are done on CPU side. Also, about 1/3 of CMFD

and 3/4 of axial solver time is spent for communication,

which is caused by the use of slow Ethernet network.

The detrimental factors apart from the hardware are: 1)

axial sweep occurs in the middle of the CMFD power

iteration, which requires regenerating the linear system,

and 2) CMFD routines are under-optimized. Be that as

it may, the overall speedup ratio is considerable, given

the amount of computation resources used in each case.

Next, the validity of mixed precision strategy was

examined. The solutions obtained at full convergence (9

MOC outers) were used. Figure 6 shows the integrated

pin power difference between double precision CPU

solver and mixed precision GPU solver, and Figure 7

shows the integrated axial power difference. It can be

Transactions of the Korean Nuclear Society Autumn Meeting

Yeosu, Korea, October 25-26, 2018

seen that the difference in the power only occurs at the

last significant digit (10-4), though the degree of error is

slightly larger in the axial power than in the pin power.

Therefore, we conclude that the mixed precision scheme

is valid and also effective.

Figure 6. Absolute difference of integrated pin power.

Figure 7. Absolute difference of integrated axial power.

4. Conclusion

GPU acceleration capability has been implemented in

nTRACER. The modules are still under development,

so there exist yet under-optimized routines, such as the

host set-up routines of CMFD solver. However, with the

significant rates of speedup in hotspots, total runtime

reduction was remarkable as well. Also, the validity of

mixed precision techniques were verified, which enables

the use of commercial GPUs in scientific calculation.

Still, there exist limitations in 3D calculation, though

they are mostly contributed by the hardware. First is the

slowdown of host routines that comes from sharing the

CPU resources. It is inevitable in the systems where

multiple GPUs are contained in a single computing node,

and the only way to resolve this problem is to optimize

the CPU routines and try to offload more calculations

on GPUs. Second is the communication load in CMFD

and axial calculation. It can be somehow mitigated by

optimizing CMFD algorithms in the way that minimizes

communications such as applying local/global iteration

strategy. However, the best way to overcome it is to use

high performance networks such as Infiniband.

Remaining works are as follows: 1) incorporation of

thermal-hydraulics feedback calculation to perform HFP

calculations, 2) incorporation of depletion calculation to

perform core follow calculations, and 3) CMFD routine

optimizations. Finishing the tasks will make it available

to complete a whole-core cycle depletion within 2 hours

on a moderate-sized GPU cluster.

ACKNLOGEMENTS

This research is supported by National Research Foundation

of Korea (NRF) Grant No. 2016M3C4A7952631 (Realization

of Massive Parallel High Fidelity Virtual Reactor).

REFERENCES

[1] B. Kochunas, T. Downar, Z. Liu, “Parallel 3-D Method of

Characteristics in MPACT,” International Conference on

Mathematics and Computational Methods Applied to Nuclear

Science and Engineering, Sun Valley, Idaho, USA, May 5 – 9

(2013).

[2] J. Y. Cho, S. Yuk, “Massive Parallel Computation for an

Efficient Whole Core Transport Calculation,” Transactions of

the Korean Nuclear Society Spring Meeting, Jeju, Korea, May

17 – 18 (2018).

[3] S. Choi, D. Lee, “Efficient Parallelization Strategy of

STREAM for Three-dimensional Whole-core Neutron

Transport Calculation,” Transactions of the Korean Nuclear

Society Spring Meeting, Jeju, Korea, May 17 – 18 (2018).

[4] W. Boyd, K. Smith, B. Forget, “A Massively Parallel

Method of Characteristics Neutral Particle Transport Code for

GPUs,” International Conference on Mathematics and

Computational Methods Applied to Nuclear Science and

Engineering, Sun Valley, Idaho, USA, May 5 – 9 (2013).

[5] N. Choi, J. Kang, H. G. Joo, “Massively Parallel Method

of Characteristics Neutron Transport Calculation with

Anisotropic Scattering Treatment on GPUs,” International

Conference on High Performance Computing in Asia-Pacific

Region, Tokyo, Japan, Jan 28 – 31 (2018).

[6] N. Choi, J. Kang, H. G. Joo, “Performance Comparison of

Linear System Solvers for CMFD Acceleration on GPU

Architectures,” Transactions of the Korean Nuclear Society

Spring Meeting, Jeju, Korea, May 17 – 18 (2018).

[7] J. Kang, H. G. Joo, “GPU-based Parallel Krylov Linear

System Solvers for CMFD Calculation in nTRACER,”

Transactions of the Korean Nuclear Society Spring Meeting,

Jeju, Korea, May 17 – 18 (2018).

[8] N. Choi, J. Kang, H. G. Joo, “Stability Enhancement of

Planar Transport Solution Based Whole-core Calculation

Employing Augmented Axial Method of Characteristics,”

Annals of Nuclear Energy. (Submitted for publication.)

[9] H. Hong, H. G. Joo, “Analysis of the APR1400 PWR

Initial Core with the nTRACER Direct Whole Core

Calculation Code and the McCARD Monte Carlo Code,”

Transactions of the Korean Nuclear Society Spring Meeting,

Jeju, Korea, May 18-19 (2017).

