A Comparative Study of Safety Systems from Selected Advanced Nuclear Reactors

Anselm Niwemuhwezi^{a*}, Sukho Lee^b

^aKorea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea ^bKorea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142, Republic of Korea ^{*}Corresponding author: a.niwemuhwezi@kaist.ac.kr

1. Introduction

Reactor safety systems required for achieving fundamental safety functions in VVER-1200 (V-392M), AP1000 and APR1400 nuclear reactors were compared. These safety functions are; control of reactivity, removal of decay heat and confinement of radioactive material.

The selected reactors are of generation III and III⁺. Generation III reactors are advanced nuclear reactors that are developed from generation II reactors. They incorporate improvements in areas of fuel technology, thermal efficiency, modular construction, safety systems and standardized design. These reactors are currently under construction. They have a design life of 60 years. Examples include HPR1000, APR1400, ABWR and AP600. Generation III⁺ are evolutionary reactors developed from Gen III offering significant improvements in safety and economics. Examples include VVER-1200, AP1000 and APR⁺.

VVER-1200 is a generation III⁺ pressurized water reactor developed by OKB Gidropress [1]. It is an evolutionary development of VVER-1000 reactor with additional passive safety features. It has distinguishing features from most of the other PWRs, including horizontal steam generators and hexagonal fuel assemblies. There are two designs of VVER-1200 that is V-392M and V-491. The differences are in plant layout, I&C systems, feedwater system, and the main control room. V-392M uses more passive safety systems compared to V-491. However, each of them meets safety requirements and IAEA recommendations for safety of nuclear power plants in design. For this study, V-392M design was considered.

Advanced Passive PWR (AP1000) is a generation III+ pressurized water reactor designed by Westinghouse based on AP600 design [2]. It uses more passive safety features that rely more on natural forces such as gravity and natural convection.

Advanced Power Reactor 1400 MWe (APR1400) is a generation III pressurized water reactor developed by KEPCO/KHNP based on the experience from development, construction, and operation of OPR1000 [3].

2. Objectives and scope of the study

The objective is to study and compare safety systems of VVER-1200, AP1000 and APR1400 reactors necessary for achieving fundamental safety functions. The study will also show how the concept and principles of defense-in-depth (DiD) are applied in the design and operation of these reactors. This comparison will be useful for safety evaluation of the selected designs especially to newcomer countries who plan to utilize nuclear energy.

This study focuses on safety systems of three reactors as representatives of generation III and III+ advanced nuclear reactors. These designs were compared based on the type of safety system present and its ability to execute its safety function. In addition, the application of DiD principle in reactor design was discussed. The purpose is not to provide a ranking but instead to identify and describe safety systems used to achieve fundamental safety functions and how DiD is achieved in design.

	VVER -1200	AP1000	APR 1400
Thermal output (MWth)	3200	3415	3983
Net electrical output (MWe)	1082	1100	1400
Net plant efficiency (%)	33.9	32	35.1
Design life (years)	60	60	60
Refueling Interval (months)	12 - 18	18	18
Core Damage Frequency (CDF)	<1E-6	<5.09E-7	<1E-5
Large Early Release Frequency (LERF)	<1E-7	<5.94E -8	<1E-6
Safe shutdown earthquake (SSE)	0.25g	0.3g	0.3g

Table 1: General reactor specifications

3. Fundamental safety principles

Safety functions must be accomplished to ensure safety of the facility at all conditions that is normal plant condition, anticipated operational occurrences and accident conditions. There are three fundamental safety functions as discussed below.

Control of reactivity: The nuclear reaction is a chain reaction that must be controlled to avoid excessive reactivity that can lead to an explosion. Control rods containing neutron-absorbing materials such as boron, silver, indium and cadmium are used for primary reactivity control. The chain reaction is terminated when control rods are fully inserted but it proceeds by partial or complete removal of control rods. The secondary measure to control reactivity is by use of chemical shim; usually boric acid. Control is achieved by varying concentrations of this neutron-absorbing chemical.

Removal of decay heat: Heat is removed during normal operation by generating steam, which runs the turbine that is connected to a generator that generates electrical energy. When the reactor is shutdown, the core continues to generate decay heat therefore there should be systems to remove the decay heat generated.

Confinement of radioactive materials: Radioactive materials are isolated from the environment by the containment. The containment acts as the last barrier to the release of radioactive material to the environment in case of core meltdown.

4. Application of defense in depth principle (DiD)

DiD is a nuclear safety concept that involves establishment of multiple layers of defense such that failure of one layer is compensated by the other. The first barrier of defense is the fuel matrix, the second barrier is fuel rod cladding, the third barrier is primary circuit boundary, and the fourth barrier is the containment [4]. DiD is applied at all stages of nuclear facilities that is; siting, design, construction, operation and decommissioning. In order to prevent single failure, principles of independence, redundancy and diversity of systems are necessary.

Table 2: Levels of defense in depth and ways of achieving the objectives

Level	Objective	Ways of achieving
		the objective
Level 1	Prevention of	Conservative design,
	abnormal	selection of
	operation and	appropriate design
	failures	codes, materials,
		components and
		systems, proper site
		selection, quality
		assurance in design,
		construction and
		operation, following
		operating instructions
		and operation by
		qualified and well
		trained staff.
Level 2	Control of	Provision of specific
	abnormal	systems and features
	operation and	in design, use of
	detection of	control systems,
	failures	limiting systems,
		protection systems
		and other
		surveillance features,

		establishment of
		operating procedures
		to prevent initiating
		events, minimize
		their consequences
		and ensure that the
		plant returns to a safe
		state.
Level 3	Control of	Use of engineered
	accidents within	safety features, safety
	the design basis	systems and
		procedures to prevent
		damage to the reactor
		core, prevent release
		of radioactive
		material, and return
		the plant to a safe
		state.
Level 4	Control of severe	Complementary
Level 4	Control of severe plant conditions,	Complementary measures and
Level 4	Control of severe plant conditions, including	Complementary measures and accident
Level 4	Control of severe plant conditions, including prevention of	Complementary measures and accident management,
Level 4	Control of severe plant conditions, including prevention of accident	Complementary measures and accident management, establishment of
Level 4	Control of severe plant conditions, including prevention of accident progression and	Complementary measures and accident management, establishment of mechanisms for
Level 4	Control of severe plant conditions, including prevention of accident progression and mitigation of the	Complementary measures and accident management, establishment of mechanisms for continuous cooling of
Level 4	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of	Complementary measures and accident management, establishment of mechanisms for continuous cooling of nuclear fuel and
Level 4	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents	Complementary measures and accident management, establishment of mechanisms for continuous cooling of nuclear fuel and confinement of
Level 4	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents	Complementary measures and accident management, establishment of mechanisms for continuous cooling of nuclear fuel and confinement of radioactive material.
Level 4 Level 5	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents Mitigation of	Complementary measures and accident management, establishment of mechanisms for continuous cooling of nuclear fuel and confinement of radioactive material. Provision of
Level 4 Level 5	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents Mitigation of radiological	Complementary measures and accident management, establishment of mechanisms for continuous cooling of nuclear fuel and confinement of radioactive material. Provision of adequate emergency
Level 4 Level 5	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents Mitigation of radiological consequences of	Complementary measures and accident management, establishment of mechanisms for continuous cooling of nuclear fuel and confinement of radioactive material. Provision of adequate emergency response facilities,
Level 4 Level 5	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents Mitigation of radiological consequences of significant	Complementary measures and accident management, establishment of mechanisms for continuous cooling of nuclear fuel and confinement of radioactive material. Provision of adequate emergency response facilities, emergency plans and
Level 4 Level 5	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents Mitigation of radiological consequences of significant release of	Complementary measures and accident management, establishment of mechanisms for continuous cooling of nuclear fuel and confinement of radioactive material. Provision of adequate emergency response facilities, emergency plans and emergency
Level 4 Level 5	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents Mitigation of radiological consequences of significant release of radioactive	Complementary measures and accident management, establishment of mechanisms for continuous cooling of nuclear fuel and confinement of radioactive material. Provision of adequate emergency response facilities, emergency plans and emergency procedures for on-site
Level 4 Level 5	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents Mitigation of radiological consequences of significant release of radioactive material	Complementary measures and accident management, establishment of mechanisms for continuous cooling of nuclear fuel and confinement of radioactive material. Provision of adequate emergency response facilities, emergency plans and emergency procedures for on-site and off-site

In addition, safety functions and DiD are ensured through use of physical plant boundaries such as fuel cladding, reactor coolant system pressure boundary and containment pressure boundary. The presence of passive safety systems notably in the AP1000 and other two reactors ensure that core cooling and containment integrity are maintained in case of design basis events. Challenges to integrity of physical barriers, failure of one or more barriers, failure of a barrier due to failure of another barrier and errors during operation and maintenance should be prevented to ensure that DiD is maintained.

5. Safety systems in selected designs

Safety systems perform the fundamental safety functions of reactivity control, decay heat removal and confinement of radioactive materials. They are classified either as active or passive. Active systems rely on external input such as power supply actuation or mechanical movement. They offer a quick response to handle abnormal events, deviations and design basis accidents. A passive system does not depend on external input to function; it needs a change in pressure, temperature or fluid flow. Passive systems can be used for decay heat removal; however, they are not suitable for quick shutdown in case of emergencies.

All the three reactor types meet the fundamental safety principles and fulfill the concept of DiD and safety functions. Even though the passive safety systems are more reliable, there are still existing uncertainties in the performance and reliability of the passive safety system. These include; understanding of physical phenomena, uncertainty in the natural circulation, definition of passive failure, failure probability and dynamic reliability.

5.1 VVER-1200

This reactor relies on both active and passive safety systems.

Table 3: Safety systems of VVER-1200

System	Function
Emergency core	Cool down the reactor when heat
cooling system	removal through generators
cooling system	becomes ineffective
Low pressure	Supply boric acid solution to the
emergency	reactor coolant system in case of
injection system	LOCA accident
Emergency	Inject boric acid into the
boron injection	pressurizer in case of a leak to
system	reduce the primary pressure and
system	aroute the primary pressure and
	of borig acid in the primary
	applant under a PDPA without
Dessive core	Schann. Maintain applant laval required
flooding system	for the reactor cooling to provent
noounig system	for the feactor cooling to prevent
	budraulia accumulators that con
	independently ensure core cooling
	for 24 hours in the case of a
	lookaga af any size
Dession heat	Demonstrational heat and another
Passive neat	down the plant during normal
removal system	down the plant during normal
	sinutation and a second of
	anticipated operational
Ctoore constant	Demonstration and DBA.
Steam generator	Remove residual near from the
emergency	core and cool the reactor down
cooldown	via the secondary side.
system	Desta et the environment of the
Primary	Protect the primary side
overpressure	equipment and pipelines from
protection	excessive pressure under DBA
system	and BDBA conditions.
Secondary	Prevent overpressure in steam
overpressure	generators and main steam lines.

protection system	
Main streamline	Provide quick and reliable steam
isolation system	generator isolation from a leaking
-	section such as leakage of steam
	or feed water.
Emergency gas	Removes steam-gas mixture out
removal system	of the primary side and reduces
	the primary pressure in order to
	mitigate the consequences of
	DBA and BDBA.
Core catcher	Protect against containment
	damage resulting from core
	meltdown by retaining molten
	corium in the reactor vessel.
Double-	Retain radioactive substances and
envelope	ionizing radiation within design
containment	limit.

5.2 AP1000

AP1000 depends mainly on passive safety systems. It has a simplified design because the passive systems used do not require safety-grade support systems. There is reduction in the number of tests, inspections and maintenance due to few components. Active non-safety related systems ensure reliability in normal operation. Majority of the systems are based on proven design in AP600.

Table 4: Safety systems of AP1000

System	Function
Passive core	Ensure core residual heat removal,
cooling system	safety injection & depressurization.
	Provide RCS heat removal,
	injection, and boration thereby
	protecting against plant transient
	and RCS leaks and ruptures.
	Provide emergency core cooling in
	the event of LOCA resulting from
	a break in RCS.
	Injection of borated water to
	shut down the reactor or to
	compensate for reactivity increase
	caused by cooldown transients.
Passive	Remove heat from the core and
residual heat	RCS during plant cooldown and
removal	refueling operations.
system	
Passive	Cool the containment following an
containment	accident to reduce pressure such
cooling system	that the design pressure limit is not
	exceeded.
	Provide safety-related ultimate heat
	sink for the plant.
Containment	Ensure high reliability of the
isolation	containment.
system	

In-vessel	Retain molten corium in the reactor
retention of	vessel in case of core meltdown.
molten core	
debris	
Main control	Provide fresh air, cooling, and
room	filtration for the main control room
emergency	following an accident.
habitability	Isolate the normal ventilation path
system	for the control room and initiate
	pressurization upon receipt of high
	radiation signal.

5.3 APR1400

The safety systems are a combination of active and passive systems.

Table 5: Safety systems of APR1400

System	Function
Safety injection	Injection of core cooling
system	water into the reactor vessel.
	Injection of borated water
	for reactor shutdown
	purposes.
Safety injection tank	Acts as a source of water for
(with fluid device)	safety injection. The fluid
	device ensures effective use
	of the water in safety
	injection tank.
Shutdown cooling	Reduce the RCS
system	temperature from the hot
	shutdown operating
	temperature to the refueling
	temperature.
Auxiliary	Supply feedwater to the
feedwater supply	steam generators for heat
system	removal from the RCS for
	events in which the main
	feedwater systems are
	unavailable.
Cavity flooding	Prevent direct containment
system	heating by core debris by
	convoluting the flow path of
	the reactor cavity.
External reactor	Retain molten corium under
vessel cooling system	severe accident conditions.
Safety	Depressurize the RCS in the
depressurization and	event that pressurizer spray
vent system	is unavailable during plant
	cooldown.
Containment spray	Reduce the containment
system	temperature and pressure in
	case of accidents in the
	containment.
Hydrogen	Accommodate hydrogen
mitigation system	production from 100% fuel
	clad metal-water reaction
	and limit the average

	hydrogen concentration in containment to 10% during accident conditions.
Emergency	Reduce the containment
containment spray	temperature and pressure
backup system	during severe accidents by
	using the spray water
	supplied from the temporary
	water source.

5. Conclusion

DiD is an essential concept that should be applied at all stages of the nuclear power plant. Safety functions are met by use of active and passive systems. AP1000 uses more passive systems to achieve fundamental safety functions as compared to APR1400 and VVER-1200, which mainly depend on active systems. Active systems ensure prompt action while passive systems ensure reliable action thus it is better to use both.

In conclusion, all the three reactor types meet the fundamental safety principles with fulfilment of DiD concept and safety functions. Even though the passive safety systems are more reliable, further evaluation of the performance and reliability of the system such as understanding of physical phenomena and dynamic reliability are necessary.

REFERENCES

[1] IAEA, "Status report 107 - VVER-1200 (V-392M) (VVER-1200 (V-392M))," IAEA NPTDS, Vienna, 2011.

[2] IAEA, "Status report 81 - Advanced Passive PWR (AP 1000)," IAEA NPTDS, Vienna, 2011.

[3] IAEA, "Status report 83 - Advanced Power Reactor (APR1400)," IAEA NPTDS, Vienna, 2011.

[4] IAEA, Safety of Nuclear Power Plants: Design, Vienna: International Atomic Energy Agency, 2016.