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1. Introduction 

 
Monte Carlo transport codes are commonly used to 

tally quantities of interest related to the design, 

performances and safety of nuclear systems. Due to the 

stochastic process, the output of a Monte Carlo code is 

never a single value, but instead a probability distribution 

characterized by a mean value m and an absolute 

standard deviation t. In the limit of the central limit 
theorem [1], for a large enough number of particle 

histories, this probability distribution is Gaussian and the 

probability that the “true tally mean” lies in the range [m-

αt; m+αt] is given by: 

P(∝) =  
1

√2𝜋
∫ 𝑒𝑥𝑝(− 𝑥2 2⁄ )𝑑𝑥

𝛼

−𝛼
,  (1) 

where commonly used values are 𝑃(1) = 68.27% , 

𝑃(2) = 95.45% and 𝑃(3) = 99.73%. 

The usual issue that users encounter when using a 

Monte Carlo code is to determine when the number of 

particles histories is “high enough” for the central limit 

theorem to apply. One wants to avoid running too few 

particles histories and obtaining results that “look like 
converged” but that are actually not converged. Another 

pitfall is, one also wants to avoid running too many 

particles histories to guarantee convergence and 

suffering from a high computational burden and 

potentially waste of computer time. Therefore, built-in 

diagnosis tests to assess if a Monte Carlo result is already 

converged, or adversely needs more particles histories to 

converge, go a long way helping users make more well-

informed choices about their Monte Carlo calculations 

and increase the user-friendliness and user-efficiency of 

Monte Carlo codes overall. 

This paper presents the tally statistical tests, i.e. tally 
convergence diagnosis tests, recently implemented in the 

Monte Carlo MCS [2] developed by Ulsan National 

Institute of Science and Technology. The MCS statistical 

tests are based on the well-known 10 statistical tests of 

the Monte Carlo code MCNP [3]. Theory behind the tests 

and a practical MCS output are presented successively. 

 

2. Methods and Results 

 

2.1 Definitions 

 

For a tally X, the tally density function f is defined as 

the history score probability density function (PDF) for 

selecting a random particle walk that scores x > 0 to the 

tally. The PDF f is normalized so that ∫ 𝑓(𝑥)𝑑𝑥
+∞

0
= 1. 

The true mean E[𝑥]  and the true variance 𝜎2 of the 

population of x score values are defined respectively as: 

E[𝑥] =  ∫ 𝑥. 𝑓(𝑥)𝑑𝑥
+∞

0
,  (2) 

𝜎2 = E[𝑥2] − E[𝑥]2.  (3) 

For a Monte Carlo estimation with N particle histories, 

𝑥𝑖 being the score of the ith particle history to the tally X, 

the true mean is approximated by the sample mean 𝑥̅ and 

an estimation 𝑆𝑥̅
2 of the variance of this sample mean is 

given according to the expressions: 

𝑥̅ = ∑ 𝑥𝑖 𝑁⁄𝑖=𝑁
𝑖=1 ,  (4) 

𝑆𝑥̅
2 = ∑ (𝑥𝑖 − 𝑥̅)2 (𝑁(𝑁 − 1))⁄𝑖=𝑁

𝑖=1 .  (5) 

The output of the Monte Carlo simulation for the tally 

X  is the pair (𝑥̅, 𝑅 = 𝑆𝑥̅ 𝑥̅⁄ )  where R  is the relative 

standard deviation associated to the sample mean 𝑥̅. In 

the limit of the central limit theorem, R  converges 

towards 
𝜎

𝑥̅√𝑁
 (i.e. R decreases in 1 √𝑁⁄  for N → +∞). 

The figure of merit (FOM) is defined as FOM =
(𝑅2 ∗ 𝑇)−1  where T is the simulation time in minutes. 

Since R ∝ 1 √𝑁⁄  and T ∝ N, FOM is expected to remain 

constant for large enough N.  The larger the FOM, the 

more efficient the Monte Carlo simulation and the 

applied variance reduction techniques are. 

The variance of the variance (VOV), a.k.a. the 

estimated relative variance of R, is a statistical indicator 

involving the 3rd and 4th moment of the PDF f. It can be 

estimated during a Monte Carlo simulation with the 

following expression: 

VOV =
∑ (𝑥𝑖−𝑥̅)4𝑖=𝑁

𝑖=1

[∑ (𝑥𝑖−𝑥̅)2𝑖=𝑁
𝑖=1 ]

2 −
1

𝑁
.  (6) 

The inverse power slope (short “slope”) of the PDF f 
is defined as an estimation of the asymptotic behavior of 

the PDF f  for large score values: for x → +∞, f(𝑥) ≈
𝑥−𝑠𝑙𝑜𝑝𝑒 . For the central limit theorem to apply, the true 

mean E[𝑥]  and the true variance 𝜎2  must be well-

defined, finite quantities; this is the case if the quantity 

E[𝑥2] = ∫ 𝑥2. 𝑓(𝑥)𝑑𝑥
+∞

0
≈ ∫ 𝑥2−𝑠𝑙𝑜𝑝𝑒 𝑑𝑥

+∞

𝜀
 with ε > 0, 

is finite, which requires that slope > 3. 

 

2.2 Tally fluctuation chart 
 

When the 10 statistical tests are turned on for a specific 

cell or mesh tally, MCS computes a tally fluctuation 

chart (TFC) of size n rows (n ≤ 20) by 6 columns for 

every time bin, energy bin and cell/mesh of the mesh/cell 

tally. Each row of the TFC corresponds to a given 

number of particles histories (NPH), the nth row 

corresponding to the total NPH specified by the user in 

the MCS input. For each line, six columns are provided: 

NPH, 𝑥̅, 𝑅, VOV, slope and FOM. An example of TFC 
output of MCS is shown in Fig. 1. 
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Fig. 1. Example of TFC output by MCS. 

 

2.3 Implementation of 10 tests 

 

MCS performs 10 checks on each generated TFC to 

help the user assess the precision of the output result 
(𝑥̅, 𝑅). We note js the index of the first TFC row in the 

last half of the problem (i.e. js ≥ 𝑛 2⁄ ) for which 𝑥̅ ≠ 0. 

We define jr, jv as the first indexes ≥ js for which R ≠
0, respectively VOV ≠ 0.   

The 1st test consists in checking that the sample mean 

𝑥̅ has a nonmonotonic behavior (i.e. no up or down trend) 

as a function of NPH for the last half of the problem. If 

the sample mean stays constant, i.e. (1 −
𝑥̅(𝑗𝑥)

𝑥̅(𝑛)
) ≤ 10−7, 

then the test is considered as passed. If the sample mean 

does not stay constant, then if the sample mean keeps on 

decreasing or keeps on increasing from row js to row n, 

the test is failed, else it is passed. 

The 2nd test consists in checking if the final R value 

(R value of the nth row of the TFC) has an acceptable 

magnitude, i.e. is below some arbitrary low boundary. A 

value of 0.1 is adopted for this test: if R(𝑛) < 0.1 the test 
is passed, else it is failed. 

The 3rd test consists in checking whether 𝑅 decreases 

monotonically as a function of NPH for the last half of 

the problem. For each index j from js+1 to n, if R(𝑗) ≤
𝑅(𝑗 − 1) then the test is passed. If R(𝑗) > 𝑅(𝑗 − 1), the 

test is not automatically failed. Instead it is checked if the 

increase of the 𝑅 value is still compatible with stochastic 

fluctuations. In practice, if 𝑅(𝑗) > 𝑅(𝑗 − 1), the test is 
considered failed only if  

√
𝑁𝑃𝐻(𝑗)

𝑁𝑃𝐻(𝑗−1)

𝑅(𝑗)

𝑅(𝑗−1)
> 𝑚𝑎𝑥(1.1, 𝐶3),  (7) 

where the coefficient 𝐶3 is a measure of how much the 

𝑅 value can reasonably be expected to fluctuate:  

𝐶3 = 1 + √𝑉𝑂𝑉(𝑗 − 1) + 2.5 ∗ 𝑉𝑂𝑉(𝑗 − 1).  (8) 

The 4th test consists in checking that 𝑅 decreases as 

1 √𝑁𝑃𝐻⁄  (as should theoretically be the case) for the last 

half of the problem. This 4th test fails automatically if 

the 3rd test is failed. Otherwise, it is investigated whether 

the quantity 𝑄4 = √
𝑁𝑃𝐻(𝑗𝑟)

𝑁𝑃𝐻(𝑛)

𝑅(𝑗𝑟)

𝑅(𝑛)
 is reasonably close to 1. 

In practice the test is passed if and only if 

𝑚𝑎𝑥 (𝑄4,
1

𝑄4
) ≤ 𝑚𝑎𝑥(1.05, 𝐶4),  (9) 

where the coefficient 𝐶4  is defined using VM =
max(𝑉𝑂𝑉(𝑗𝑟), 𝑉𝑂𝑉(𝑛)) as 

𝐶4 = √1 + 5 ∗ √𝑉𝑀 + 12.5 ∗ 𝑉𝑀.  (10) 

The 5th test consists in checking if the final VOV value 

(VOV value of the nth row in the TFC) has an acceptable 

magnitude, i.e. is below some arbitrary low boundary. A 

value of 0.1 is adopted for this test: if VOV(𝑛) < 0.1 the 

test is passed, else it is failed. 

The 6th test consists in checking if VOV  decreases 

monotonically as a function of NPH for the last half of 

the problem. This could be done by checking if the 

inequality VOV(𝑗) ≤ 𝑉𝑂𝑉(𝑗 − 1) is valid for each row j 

from js+1 to n. In practice, the variations of VOV are 

subject to strong statistical fluctuations, and this test is 

therefore relaxed by only demanding that VOV(𝑗) ≤ 2 ∗
𝑉𝑂𝑉(𝑗 − 1) for each row j from js+1 to n. 

The 7th test consists in checking that VOV decreases as 

1 𝑁𝑃𝐻⁄  (as should theoretically be the case) for the last 

half of the problem. This 7th test fails automatically if 

the 6th test is failed. Otherwise, it is investigated whether 

the quantity 𝑄7 =
𝑁𝑃𝐻(𝑗𝑣)

𝑁𝑃𝐻(𝑛)

𝑉𝑂𝑉(𝑗𝑣)

𝑉𝑂𝑉(𝑛)
 is reasonably close to 

1. In practice the test is passed if and only if 

𝑚𝑎𝑥 (𝑄7,
1

𝑄7
) < 1.5.  (11) 

The 8th test consists in checking whether the FOM 

remains constant (as should theoretically be the case) for 

the last half of the problem. It is therefore investigated if 

the quantity 𝑄8 =
𝐹𝑂𝑀(𝑗𝑠)

𝐹𝑂𝑀(𝑛)
 is reasonably close to 1. In 

practice the test is passed if and only if 

 𝑚𝑎𝑥 (𝑄8,
1

𝑄8
) < 𝑚𝑎𝑥(1.02, 𝑚𝑖𝑛(1.5, 𝐶8)), (12) 

where the coefficient 𝐶8  is defined similarly to the 

coefficient 𝐶8  in Eq. (10) but with VM =
max(𝑉𝑂𝑉(𝑗𝑠), 𝑉𝑂𝑉(𝑛)). 

The 9th test consists in checking that the FOM has a 

nonmonotonic behavior (i.e. no up or down trend) as a 

function of NPH for the last half of the problem. This is 
done in a straightforward way by checking if the FOM 

keeps on decreasing or keeps on increasing from row js 

to row n. If this is the case, the test is failed, else it is 

passed. 

The 10th test consists in checking that the final slope 

value (slope value of the nth row in the TFC) is > 3, thus 

guaranteeing that the quantities E[𝑥]  and 𝜎2  are well-

defined and finite.  

For the sake of an example, Fig. 2 presents the MCS 

output table summarizing the results of the 10 tests 

associated with the TFC of Fig. 1. 

 
2.4 Calculation of the PDF inverse power slope  

 

The slope of the tally density function f is estimated as 

follows. For each time bin, energy bin and cell/mesh of 

a selected mesh/cell tally MCS keeps in memory 

throughout the simulation the 200 largest contributions 

𝑥𝑖 to the tally (“the high-score tail of the tally”). If fewer 

than 500 non-zero scores overall are recorded for the 
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tally, the slope is not calculated at all and is assigned a 

value of zero, thus failing the 10th test. In the opposite 

case, MCS first checks for the presence of an upper 

boundary B > 0 of the tally density function. In practice, 

if the 100 largest scores do not differ from each other 

within 1%, it is considered that the tally density function 

has an upper boundary. In this case, the integral E[𝑥2] =

∫ 𝑥2. 𝑓(𝑥)𝑑𝑥
𝐵

0
 is always finite and a value of 10 is 

assigned to the slope, thus passing the 10th test. In the 

absence of an upper boundary, MCS proceeds to the 

actual estimation of the slope. The 𝑛𝑓 largest scores are 

used for the slope estimation, where 𝑛𝑓 is given by 𝑛𝑓 =

𝑚𝑖𝑛(200 , 0.05 ∗ 𝑁𝑥>0) and 𝑁𝑥>0 is the number of non-

zero scores for the tally. It is assumed that the  𝑛𝑓 largest 

scores are sampled from a generalized Pareto PDF 

defined by the parameters a and k: 

𝑃𝑎,𝑘(𝑥) =
1

𝑎
(1 +

𝑘𝑥

𝑎
)

−(1+
1

𝑘
)

.  (13) 

The Melder-Nead downhill simplex method [4] is 

applied to determine values of the parameters a and k 

that best fit the 𝑛𝑓  largest scores. The slope is then 

calculated as slope = 1 + 1 𝑘⁄ . Slope values greater 

than 10 (equivalent of a “perfect score”) are set equal to 

10. 

 

2.5 Empirical history score PDF  

 
When the 10 statistical tests are turned on for a specific 

cell or mesh tally, MCS computes the empirical history 

score PDF f for every time bin, energy bin and cell/mesh 

of the mesh/cell tally. The empirical PDF is calculated 

on a logarithmically spaced array of size 600 spanning 

from 10-30 to 10+30, representing 60 decades of possible 

score values. The discretized value of the empirical PDF 

f between the array boundaries 𝑏𝑖 and 𝑏𝑖+1 = 100.1 ∗ 𝑏𝑖 

is calculated as 

f(𝑖) =
𝑁𝑖

𝑁∗(𝑏𝑖+1−𝑏𝑖)
,  (14) 

where 𝑁𝑖  is the number of score values 𝑥𝑖  such that 

b(𝑖) ≤  𝑥𝑖 < 𝑏𝑖+1 and N is the total number of simulated 

particle histories.  

The empirical tally PDF is displayed on a log-log plot 

in MCS output. For the sake of an example, the plot 

associated to the TFC of Fig. 1 is shown in Fig. 3. This 

allows the user to check visually the shape of the 
empirical PDF, especially the shape of the high-score tail. 

For well-behaved tallies, the PDF high-score tail must be 

decreasing and should not contain unsampled score 

regions.  

In addition, if the estimated slope of the tally density 

function is not equal to zero or ten, the Pareto fit is also 

displayed on the log-log plot of the empirical tally 

density function with “s” markers. The user can this way 

perform a visual control of the quality of the Pareto PDF 

fit applied on the high-score tail points of the tally 

density function. In the cases where the high-score tail 

points cannot be sampled by nature with a Pareto PDF, 
the Pareto PDF fit may not reflect the best estimate of the 

slope of the tally density function. In those cases, the user 

can simply use a ruler and the log-log plot of the tally 

density function with the “s” markers to check the 

calculated value of the slope and determine a more 

accurate estimate of the slope of the high-score tail.   

 

2.6 Analysis of an example  

 
Fig. 1, Fig. 2 and Fig. 3 are successively shown after 

each other in MCS output. Fig. 1 reveals that the 

information provided is about a cell tally (“ct3”) and 

specifically about the quantity tallied in the 1st time bin 

(“TIME=1”) in the 3rd cell (“CELL=3”) in the 2nd energy 

bin (“ENERGY = 2”) of said cell tally. According to Fig. 

2, this tally did not pass one of the 10 statistical tests: the 

slope estimated with a Pareto fit of the 199 largest scores 

𝑥𝑖  of the tally equals 2.1368, which is smaller than 3. 

Looking at Fig. 3, the user can check with a ruler the 

Pareto fit estimate of the slope. The red line on the right 
of Fig. 4 covers the “s” markers printed by MCS. 

Another red line, parallel to the red line covering the “s” 

markers, is drawn in Fig. 4 for clarity. One can see that 

this latter red line decreases by about 2 decades (vertical 

lines indicated by a “d”) when the score bin goes up by 

one decade from 1.58E+01 to 1.58E+02. This decrease 

of about 2 decades per decade is consistent with the slope 

estimate of 2.1368 calculated by MCS. However, one 

can notice that the “s” markers do not represent 

accurately the decrease of the high-score tail of the tally 

density function. Most likely, the discrete distribution of 
the 200 largest scores is such that by nature, it cannot be 

sampled with a Pareto PDF. In that case, the user can 

position the ruler according to the blue line in Fig. 4 to 

get a more accurate estimate of the slope. The blue line 

decreases by more than 5 decades when the score bin 

goes up from 1.00E+02 to 1.58E+02, that is, roughly 0.3 

decade. Thus, despite the MCS warning, the user can be 

sure that the slope of the tally density function is at least 

15 and that the true mean and variance are therefore finite 

and well-defined. The tally can therefore be accepted by 

the user even if the 10th test seemingly failed.  
 

3. Conclusions 

 

Tally convergence diagnosis tools inspired by the 10 

statistical tests of MCNP have been implemented in the 

Monte Carlo neutron-photon transport code MCS 

developed by Ulsan National Institute of Science and 

Technology. Empirical history score probability density 

functions, tally fluctuation charts and results of statistical 

tests are now available in MCS. These new features are 

designed to help the user assess more efficiently the 

convergence of MCS calculation results, thus increasing 
the user-friendliness of MCS. In the future, these new 

features will be especially useful in simultaneous use 

with weight-window-based variance reduction 

techniques currently being implemented in MCS.  
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Fig. 2. Example of MCS output table summarizing the results of the 10 tests applied on the TFC of Fig. 1. 
 

 
Fig. 3. Example of MCS tally density log-log plot associated with the TFC of Fig. 1.  
 

 
Fig. 4. Zoom on the high-score tail of the tally density. The Pareto fit slope estimate is highlighted with a red line over the “s” markers. 
The two red lines are parallel to each other.  The slope measured by the user with a ruler is shown with a blue line.  


