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1. Introduction 

 
An efficient parallel algorithm has been developed 

for three-dimensional (3D) neutron transport code 

STREAM. Recently, the 3D neutron transport 

calculation is becoming more attractive for reactor 

analysis. The 3D calculation can simplify the 

calculation procedure and get rid of approximations of 

the conventional two-step method. In the former work, 

the 2D/3D method was implemented in STREAM and 

verified against the C5G7 problem [1], which showed 

accurate results in eigenvalue and pin power 

calculations. The work was done for serial calculation 

taking a long time for 3D problems. The parallel 

calculation is essential because of a lot of computational 

burden such as a long computing time and a lot of 

memory requirement. 

STREAM has been parallelized to solve large sized 

problems, such as a 3D whole core problem. A hybrid 

MPI/OPENMP parallel algorithm has been developed 

for the 2D/3D method in STREAM. The 2D/3D method 

is presented first, and then the parallelization strategy 

describes how the domain decomposition and hybrid 

MPI/OPENMP parallelization are applied with a detail 

algorithm. At the end of this paper, preliminary results 

for a 3x3 mini-core problem are presented.  

 

2. Methods and Results 

 

2.1. 2D/3D Method in STREAM 

 

STREAM adopts the 2D/3D method which uses 2D 

method of characteristics (MOC) in the radial direction 

and the discontinuous Galerkin method in the axial 

direction. The 2D/3D method is introduced briefly in 

this section.  

The angular flux, scalar flux, and neutron source are 

expressed as a combination of the radial component and 

axial component as follows:  
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where i  is the index of the azimuthal angle; j  is the 

index of the polar angle; k  is the index of the MOC 

segment; s  is the position in the radial plane; g  is the 

index of the energy group; z  is the coordinate in the 

axial direction; nb  is the axial basis function; and n  is 

the order of the axial basis function. 

The second order basis function is used in the method. 

In other words, the basis function is composed of a 

constant function and a linear function. The neutron 

transport equation with these expressions is as follows:  
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where m  is the index of the flat source region (FSR). 

By using the orthogonal properties of the basis 

function and integrating over the discretized axial 

domain, the following equation is derived which is 

suitable to be solved by a traditional 2D MOC solver.  
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where the modified transport cross-section and the 

sources are  
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and 
,

, ,
ˆ g

i j m  denotes the axial surface sources from an 

adjacent plane.  

A similar method was developed by Argonne 

National Laboratory and implemented in PROTEUS-

MOC [2]. The methods in STREAM and PROTEUS-

MOC are similar in that the discontinuous Galerkin 

method is used in the derivation. However, the final 

equation is different. In STREAM, the equation is 

derived to avoid calculating second order angular flux 

and scalar flux. Instead, the second order fluxes are 

implicitly considered by using a recursive expression 

for a plane interface condition. In other words, the 

MOC calculation denoted by Eq. (0) is performed for 

the first order flux only, but the STREAM method still 

has second order accuracy using the implicit 

consideration of second order flux.  
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do Outer iteration 
CMFD acceleration 
Update fission source 
do Inner iteration 
do Assemblies ···················· ! MPI parallelization with domain decomposition 
Collect boundary angular flux ·· ! MPI communication with adjacent assemblies 
Update scattering source 
do Upward and downward sweepings ! (Polar: 0~𝜋/2) and (Polar: -𝜋/2~0), respectively 
do Planes 
Get surface source ·········· ! Surface sources from adjacent plane or boundary 
do Azimuthal angles ········· ! OPENMP parallelization 
do Parallel rays ·········· ! Parallel MOC rays in an assembly 
do Segments ·············· ! Sequential segments in a MOC ray 
do Energy groups 
do Polar angles 
Compute and collect angular flux change 
Update segment outgoing flux 

end do 
end do 

end do ··················· ! Forward/backward sweeping is omitted 
end do 

end do 
Update surface source ······· ! Surface source for adjacent plane 
Compute scalar fluxes ······· ! Scalar flux of current plane 

end do 
end do 

end do 
end do  
Check convergence 

end do 

Fig. 1. Algorithm of 3D neutron transport calculation in STREAM. 

 

2.2. Algorithm of Neutron Transport Calculation 

 

In the former work, the algorithm for the transport 

calculation was optimized to reduce memory usage 

required to store surface sources [1]. The loops for 

azimuthal angle, polar angle, and energy group were 

placed outer than loops for plane, MOC ray, and 

segment. The former algorithm was effective to reduce 

memory because it does not need to store the surface 

source for all angles and energy groups at the same time. 

However, it could lose computational efficiency 

because of repeating the same calculations to obtain 

space information.  

The new algorithm in the STREAM 2D/3D method is 

shown in Fig. 1. Basically, STREAM solves a steady-

state eigenvalue problem. In order to calculate the 

eigenvalue, keff, in which we are interested, the inverse 

power method is used, and it is composed of inner/outer 

iteration loops. Before performing the inner iteration 

loop, the CMFD module is called to accelerate 

convergence of fission sources and scalar flux. In the 

inner iteration, a loop for assemblies exists. STREAM 

uses an assembly-wise MOC modular. The MOC rays 

and segments are generated for each assembly type and 

stored in the memory to be used in the MOC sweeping. 

Here, the assembly indicates not only fuel assembly, but 

also the reflector region. The outgoing angular fluxes at 

assembly boundaries come from adjacent assemblies. 

The loop of the assembly can cause slower convergence 

rate because sequential MOC ray tracing across 

assemblies is not possible. The MOC rays between 

problem boundaries need to be tracked in sequence to 

improve the convergence rate. However, most MOC 

codes, including STREAM, use CMFD acceleration 

which is very powerful to accelerate the global fission 

source and flux, and the CMFD acceleration can 

eliminate the disadvantage arising from discontinuous 

ray tracking (or Jacobi method). The reason for using an 

assembly loop is related to assembly-wise domain 

decomposition which is described in Section 2.3.  

There are loops for upward/downward sweeping and 

planes. The upward sweeping is for polar angles from 0 

to 𝜋/2 while the downward sweeping is for -𝜋/2 to 0. 

The angle-dependent axial surface source comes from 

an adjacent plane, and a 2D MOC solver is used to 

solve Eq. (0) for the current plane. After MOC 

sweeping for the plane, the surface source is updated for 

next plane. The MOC sweeping is carried out through 

the azimuthal angle loop to the polar angle loop. In the 

innermost loop, fractional change of angular flux is 

calculated and collected for each angle. Because the 

length of the MOC ray segment projected on the x-y 

plane is the same for energy groups and polar angles, it 

is not needed to repeatedly calculate the loops for 

energy groups and polar angles. By placing the loops 

for energy group and polar angle at the inner of the 

MOC ray, it is possible to reduce the number of 

calculations and it is possible to maximize cache usage. 

In addition, the forward/backward sweeping is adopted 

in each ray sweeping to reuse data, which is obtained 

during the forward sweeping, for opposite azimuthal 

angle sweeping. After the azimuthal angle loop, the 

angle dependent surface source is calculated using the 

angular flux for each flat source region. The scalar flux 

is also calculated by summing up the angular flux. 
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2.3. Domain Decomposition and MPI Parallelization 

 

The main purpose of developing 3D STREAM is to 

handle 3D whole core problems in high resolution with 

pin or sub-pin level and few centimeters height. For this 

purpose, extremely many flat source regions need to be 

considered. Therefore, the domain decomposition 

technique must be applied to reduce a huge amount of 

memory. The target machine to run is an in-house 

Linux cluster which has ~400 cores and ~6 TB memory 

in total. Simply, there are two ways to decompose the 

space domain. One is decomposing the plane in the 

axial direction (i.e., plane decomposition), and the other 

is decomposing the x-y plane according to the assembly 

boundary (i.e., assembly decomposition). Both ways 

can reduce the memory required for scalar fluxes and 

cross-sections by storing the data in distributed storage 

nodes with MPI. However, it should be noted that 

additional interfacing data is required to link the 

decomposed domains.  

 

Table I: Estimation of memory requirement for 

interfacing data: plane domain decomposition.  

Category Values 

# of 2D FSRs/assembly 10,000 

# of assemblies 300 

# of energy groups 72 

# of azimuthal angles 48 

# of polar angles 6 

Real type (byte) 4 

Memory / plane domain (GB) 249 

# of axial planes 200 

Total memory (GB) 49,766 

 

Table II: Estimation of memory requirement for 

interfacing data: assembly domain decomposition. 

Category Values 

# of boundary points/assembly 1,000 

# of axial planes 200 

# of energy groups 72 

# of azimuthal angles 48 

# of polar angles 6 

Real type (byte) 4 

Memory / assembly domain (GB) 17 

# of assemblies 300 

Total memory (GB) 4,977 

 

In case of plane decomposition, axial surface sources 

need to be stored. Table I shows the estimation of the 

memory requirement for interfacing data. Because the 

surface source is angular dependent and each flat source 

region has its own surface source, a huge memory is 

required. For a 3D whole core problem without 

symmetric modeling, 249 GB is required for each plane 

domain. When 200 axial plane domains are used, 

49,766GB memory is required. Moreover, a large 

amount of memory can be required because the required 

memory is proportional to the number of flat source 

regions. The number of flat source regions can increase 

due to several possible reasons, i.e., ~15 radial sub-

divisions in a gadolinia fuel pellet. 

In case of MOC assembly decomposition, angular 

fluxes for MOC rays at assembly boundaries need to be 

stored. Table II shows the memory requirement for 

assembly-wise domain decomposition. About 1,000 

boundary points per assembly exist when a 0.05 cm 

MOC ray spacing condition is used. The boundary point 

is the point crossed by the MOC ray at the assembly 

boundaries. For each point, outgoing or incoming 

angular fluxes exist depending on its position and 

azimuthal angles. For a 3D whole core problem, around 

17 GB is required to store the angular flux at the 

assembly boundary for each assembly domain. In total, 

4,977 GB is required to solve a 3D whole core problem. 

The amount of memory requirement is much smaller 

than that of the plane-wise domain decomposition. For 

this reason, the assembly-wise domain decomposition is 

applied to the STREAM 3D transport solver. The 

number of boundary points can be increased with finer 

MOC ray spacing. For practical applications, however, 

a 0.05cm ray spacing condition gives a reasonable 

result and it is rare to use the strict condition. The 

planes and assemblies can be decomposed 

simultaneously. However, this way is not considered in 

this work because the number of domains is sufficiently 

large, and the number of available computing cores is 

limited.  

The assembly domain decomposition is applied to the 

MOC solver as described in Fig. 1. The loop for 

assemblies is parallelized using MPI. A MPI process 

has one or more assemblies in its domain. Each MPI 

process stores data fluxes, sources, and cross-sections 

used in its domain. Neighboring assemblies or 

decomposed domains exchange incoming and outgoing 

angular fluxes at the interfacing surfaces with point-to-

point communication. This is done by the MPI_SEND 

and MPI_RECV functions in MPI library. Except for 

this communication, no MPI communication is required 

inside the loop for an assembly. After each power 

iteration, collective communication, which is done by 

MPI_ALLREDUCE, is needed to calculate the 

eigenvalue and to check the convergence of sources.  

 

2.4. OPENMP Parallelization 

 

In addition to MPI, OPENMP is applied to reduce the 

computing time. Each MPI process calls OPENMP 

threads, and the OPENMP threads distribute work with 

shared memory allocated for each MPI process. 

Parallelization is generally most efficient when 

implemented at the coarsest level as possible if enough 

work is shared. This is done by parallelizing azimuthal 

angles as shown in Fig. 1. The loops for 

upward/downward sweepings and planes are not 

candidates for OPENMP parallelization because planes 

need to be swept sequentially (such as Gauss-Seidel) in 

the assembly-wise domain decomposition. In the 
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OPENMP parallelization, it is important to consider the 

data synchronization because they can access the same 

variables during work sharing. If the azimuthal angle is 

parallelized, it is not needed to give an effort to 

synchronize the angular flux because the OPENMP 

threads use different memory locations with their own 

azimuthal angle indexes. This is possible because a flux 

change and outgoing angular flux, which are calculated 

in innermost loop in Fig. 1, are stored in the angular 

flux variable with the azimuthal angle index. In other 

words, the angular fluxes are synchronized implicitly 

because the angular flux variable has an index of 

azimuthal angle, and the angle is decomposed by 

OPENMP threads. The only data that needs to be 

synchronized within the OPENMP loop is CMFD 

currents at pin-cell boundaries. The memory size of 

CMFD currents are much smaller than MOC fluxes, 

thus synchronizing the current is not a big burden. 

OPENMP is also uses many subroutines in STREAM, 

including the azimuthal angle loop in the 3D transport 

solver, but it is not treated in this paper.  

 

2.5. Numerical Results  

 

The performance of the parallel algorithm was 

examined using a 3x3 mini-core problem. The test case 

has 9 fuel assemblies. The UOX and MOX fuel 

assemblies, which are same assemblies as in the 3D 

C5G7 problem [3], are placed in the min-core with a 

checkerboard configuration. The number of flat source 

regions in the 2D plane is 41,616, and the number of 

axial planes is 21. The following MOC conditions are 

used: 0.05 cm ray spacing, 48 azimuthal angles, and 10 

polar angles.  

 

 
Fig. 2. Speed up factor for 3x3 mini-core problem.  

 

Table III: Elapsed time for 3x3 mini-core problem. 

# of threads ×  

# of processes 

Simulation time (sec) 

Total  

simulation 

Loop for  

azimuthal angle  

1 3,298 2,681 

9 406 316 

72 90 43 

The speed up factor and simulation time are shown in 

Fig. 2 and Table III, respectively. As shown in the 

figure and table, the loop for azimuthal angle is well 

parallelized with a speed up factor of 62 when 72 

threads and processes (i.e., 9 MPI × 8 OPENMP) are 

used. The calculation efficiency is about 87 %. On the 

other hand, the efficiency of the overall simulation is 

about 51 %. There are several reasons for this 

degradation. First, the parallel calculation is not fully 

implemented. The parts for flux calculations outside the 

azimuthal angle, and routines for CMFD are needed to 

be improved to utilize the multi cores. From now on, 

the loop for the azimuthal angle is focused to be 

parallelized because it is the most time consuming part 

in the 3D calculation. Second, elapsed time for MPI 

communication is inevitable part when the MPI is used. 

STREAM is being developed, and it is expected to be 

improved in the future.  
 

3. Conclusions 

 

The neutron transport code STREAM has been 

parallelized to solve a large size 3D problem. The 

2D/3D method and its characteristic have been 

described. The hybrid MPI/OPENMP parallel algorithm 

has been developed with consideration of the 

characteristic of the 2D/3D method. STREAM adopts 

assembly-wise domain decomposition to store required 

memory in distributed storage. The assembly domains 

are parallelized in the transport solver. In addition to 

enhancing performance, OPENMP is applied and work 

for the azimuthal angles is distributed to each of the 

OPENMP thread. A 3x3 mini-core problem was solved 

to examine the performance of the parallel algorithm, 

and it was confirmed that the developed algorithm was 

implemented successfully and showed a possibility to 

be used in 3D whole core problems. In future work, the 

parallel algorithm will be implemented and improved 

for the whole code, and larger sized p!troblems, i.e., 3D 

whole core problem, will be solved. 
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