
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 17-18, 2018

Efficient Parallelization Strategy of STREAM for

Three-dimensional Whole-core Neutron Transport Calculation

Sooyoung Choi and Deokjung Lee

*

Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
*
Corresponding author: deokjung@unist.ac.kr

1. Introduction

An efficient parallel algorithm has been developed

for three-dimensional (3D) neutron transport code

STREAM. Recently, the 3D neutron transport

calculation is becoming more attractive for reactor

analysis. The 3D calculation can simplify the

calculation procedure and get rid of approximations of

the conventional two-step method. In the former work,

the 2D/3D method was implemented in STREAM and

verified against the C5G7 problem [1], which showed

accurate results in eigenvalue and pin power

calculations. The work was done for serial calculation

taking a long time for 3D problems. The parallel

calculation is essential because of a lot of computational

burden such as a long computing time and a lot of

memory requirement.

STREAM has been parallelized to solve large sized

problems, such as a 3D whole core problem. A hybrid

MPI/OPENMP parallel algorithm has been developed

for the 2D/3D method in STREAM. The 2D/3D method

is presented first, and then the parallelization strategy

describes how the domain decomposition and hybrid

MPI/OPENMP parallelization are applied with a detail

algorithm. At the end of this paper, preliminary results

for a 3x3 mini-core problem are presented.

2. Methods and Results

2.1. 2D/3D Method in STREAM

STREAM adopts the 2D/3D method which uses 2D

method of characteristics (MOC) in the radial direction

and the discontinuous Galerkin method in the axial

direction. The 2D/3D method is introduced briefly in

this section.

The angular flux, scalar flux, and neutron source are

expressed as a combination of the radial component and

axial component as follows:

, , , , ,

,

, , , , ,

ˆ (,) () ()

()

ˆ ()

g g

i j k i j k n n

n

g g

m m n n

n

g g

i j m i j m n n

n

s z s b z

b z

Q Q b z



 


 





 








 , (0)

where i is the index of the azimuthal angle; j is the

index of the polar angle; k is the index of the MOC

segment; s is the position in the radial plane; g is the

index of the energy group; z is the coordinate in the

axial direction; nb is the axial basis function; and n is

the order of the axial basis function.

The second order basis function is used in the method.

In other words, the basis function is composed of a

constant function and a linear function. The neutron

transport equation with these expressions is as follows:

 , , , , , , ,
ˆˆ ˆ(,) (,)g g g g

i j k tr m i j k i j ms z s z Q    , (0)

where m is the index of the flat source region (FSR).

By using the orthogonal properties of the basis

function and integrating over the discretized axial

domain, the following equation is derived which is

suitable to be solved by a traditional 2D MOC solver.

, , ,

, , , , , , , ,

()
cos ()

g

i j k n g g g

j tr m n i j k n i j m n

d s
s S

ds


   , (0)

where the modified transport cross-section and the

sources are

, ,1 ,

, ,2 ,

,

, , ,1 , , ,1 , ,

, , ,2 , , ,2

2sin

2sin
ˆ

jg g

tr m tr m

g g

tr m tr m

jg g g

i j m i j m i j m

g g

i j m i j m

z

S Q
z

S Q






   


  

   
 




 , (0)

and
,

, ,
ˆ g

i j m denotes the axial surface sources from an

adjacent plane.

A similar method was developed by Argonne

National Laboratory and implemented in PROTEUS-

MOC [2]. The methods in STREAM and PROTEUS-

MOC are similar in that the discontinuous Galerkin

method is used in the derivation. However, the final

equation is different. In STREAM, the equation is

derived to avoid calculating second order angular flux

and scalar flux. Instead, the second order fluxes are

implicitly considered by using a recursive expression

for a plane interface condition. In other words, the

MOC calculation denoted by Eq. (0) is performed for

the first order flux only, but the STREAM method still

has second order accuracy using the implicit

consideration of second order flux.

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 17-18, 2018

do Outer iteration
CMFD acceleration
Update fission source
do Inner iteration
do Assemblies ···················· ! MPI parallelization with domain decomposition
Collect boundary angular flux ·· ! MPI communication with adjacent assemblies
Update scattering source
do Upward and downward sweepings ! (Polar: 0~𝜋/2) and (Polar: -𝜋/2~0), respectively
do Planes
Get surface source ·········· ! Surface sources from adjacent plane or boundary
do Azimuthal angles ········· ! OPENMP parallelization
do Parallel rays ·········· ! Parallel MOC rays in an assembly
do Segments ·············· ! Sequential segments in a MOC ray
do Energy groups
do Polar angles
Compute and collect angular flux change
Update segment outgoing flux

end do
end do

end do ··················· ! Forward/backward sweeping is omitted
end do

end do
Update surface source ······· ! Surface source for adjacent plane
Compute scalar fluxes ······· ! Scalar flux of current plane

end do
end do

end do
end do
Check convergence

end do

Fig. 1. Algorithm of 3D neutron transport calculation in STREAM.

2.2. Algorithm of Neutron Transport Calculation

In the former work, the algorithm for the transport

calculation was optimized to reduce memory usage

required to store surface sources [1]. The loops for

azimuthal angle, polar angle, and energy group were

placed outer than loops for plane, MOC ray, and

segment. The former algorithm was effective to reduce

memory because it does not need to store the surface

source for all angles and energy groups at the same time.

However, it could lose computational efficiency

because of repeating the same calculations to obtain

space information.

The new algorithm in the STREAM 2D/3D method is

shown in Fig. 1. Basically, STREAM solves a steady-

state eigenvalue problem. In order to calculate the

eigenvalue, keff, in which we are interested, the inverse

power method is used, and it is composed of inner/outer

iteration loops. Before performing the inner iteration

loop, the CMFD module is called to accelerate

convergence of fission sources and scalar flux. In the

inner iteration, a loop for assemblies exists. STREAM

uses an assembly-wise MOC modular. The MOC rays

and segments are generated for each assembly type and

stored in the memory to be used in the MOC sweeping.

Here, the assembly indicates not only fuel assembly, but

also the reflector region. The outgoing angular fluxes at

assembly boundaries come from adjacent assemblies.

The loop of the assembly can cause slower convergence

rate because sequential MOC ray tracing across

assemblies is not possible. The MOC rays between

problem boundaries need to be tracked in sequence to

improve the convergence rate. However, most MOC

codes, including STREAM, use CMFD acceleration

which is very powerful to accelerate the global fission

source and flux, and the CMFD acceleration can

eliminate the disadvantage arising from discontinuous

ray tracking (or Jacobi method). The reason for using an

assembly loop is related to assembly-wise domain

decomposition which is described in Section 2.3.

There are loops for upward/downward sweeping and

planes. The upward sweeping is for polar angles from 0

to 𝜋/2 while the downward sweeping is for -𝜋/2 to 0.

The angle-dependent axial surface source comes from

an adjacent plane, and a 2D MOC solver is used to

solve Eq. (0) for the current plane. After MOC

sweeping for the plane, the surface source is updated for

next plane. The MOC sweeping is carried out through

the azimuthal angle loop to the polar angle loop. In the

innermost loop, fractional change of angular flux is

calculated and collected for each angle. Because the

length of the MOC ray segment projected on the x-y

plane is the same for energy groups and polar angles, it

is not needed to repeatedly calculate the loops for

energy groups and polar angles. By placing the loops

for energy group and polar angle at the inner of the

MOC ray, it is possible to reduce the number of

calculations and it is possible to maximize cache usage.

In addition, the forward/backward sweeping is adopted

in each ray sweeping to reuse data, which is obtained

during the forward sweeping, for opposite azimuthal

angle sweeping. After the azimuthal angle loop, the

angle dependent surface source is calculated using the

angular flux for each flat source region. The scalar flux

is also calculated by summing up the angular flux.

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 17-18, 2018

2.3. Domain Decomposition and MPI Parallelization

The main purpose of developing 3D STREAM is to

handle 3D whole core problems in high resolution with

pin or sub-pin level and few centimeters height. For this

purpose, extremely many flat source regions need to be

considered. Therefore, the domain decomposition

technique must be applied to reduce a huge amount of

memory. The target machine to run is an in-house

Linux cluster which has ~400 cores and ~6 TB memory

in total. Simply, there are two ways to decompose the

space domain. One is decomposing the plane in the

axial direction (i.e., plane decomposition), and the other

is decomposing the x-y plane according to the assembly

boundary (i.e., assembly decomposition). Both ways

can reduce the memory required for scalar fluxes and

cross-sections by storing the data in distributed storage

nodes with MPI. However, it should be noted that

additional interfacing data is required to link the

decomposed domains.

Table I: Estimation of memory requirement for

interfacing data: plane domain decomposition.

Category Values

of 2D FSRs/assembly 10,000

of assemblies 300

of energy groups 72

of azimuthal angles 48

of polar angles 6

Real type (byte) 4

Memory / plane domain (GB) 249

of axial planes 200

Total memory (GB) 49,766

Table II: Estimation of memory requirement for

interfacing data: assembly domain decomposition.

Category Values

of boundary points/assembly 1,000

of axial planes 200

of energy groups 72

of azimuthal angles 48

of polar angles 6

Real type (byte) 4

Memory / assembly domain (GB) 17

of assemblies 300

Total memory (GB) 4,977

In case of plane decomposition, axial surface sources

need to be stored. Table I shows the estimation of the

memory requirement for interfacing data. Because the

surface source is angular dependent and each flat source

region has its own surface source, a huge memory is

required. For a 3D whole core problem without

symmetric modeling, 249 GB is required for each plane

domain. When 200 axial plane domains are used,

49,766GB memory is required. Moreover, a large

amount of memory can be required because the required

memory is proportional to the number of flat source

regions. The number of flat source regions can increase

due to several possible reasons, i.e., ~15 radial sub-

divisions in a gadolinia fuel pellet.

In case of MOC assembly decomposition, angular

fluxes for MOC rays at assembly boundaries need to be

stored. Table II shows the memory requirement for

assembly-wise domain decomposition. About 1,000

boundary points per assembly exist when a 0.05 cm

MOC ray spacing condition is used. The boundary point

is the point crossed by the MOC ray at the assembly

boundaries. For each point, outgoing or incoming

angular fluxes exist depending on its position and

azimuthal angles. For a 3D whole core problem, around

17 GB is required to store the angular flux at the

assembly boundary for each assembly domain. In total,

4,977 GB is required to solve a 3D whole core problem.

The amount of memory requirement is much smaller

than that of the plane-wise domain decomposition. For

this reason, the assembly-wise domain decomposition is

applied to the STREAM 3D transport solver. The

number of boundary points can be increased with finer

MOC ray spacing. For practical applications, however,

a 0.05cm ray spacing condition gives a reasonable

result and it is rare to use the strict condition. The

planes and assemblies can be decomposed

simultaneously. However, this way is not considered in

this work because the number of domains is sufficiently

large, and the number of available computing cores is

limited.

The assembly domain decomposition is applied to the

MOC solver as described in Fig. 1. The loop for

assemblies is parallelized using MPI. A MPI process

has one or more assemblies in its domain. Each MPI

process stores data fluxes, sources, and cross-sections

used in its domain. Neighboring assemblies or

decomposed domains exchange incoming and outgoing

angular fluxes at the interfacing surfaces with point-to-

point communication. This is done by the MPI_SEND

and MPI_RECV functions in MPI library. Except for

this communication, no MPI communication is required

inside the loop for an assembly. After each power

iteration, collective communication, which is done by

MPI_ALLREDUCE, is needed to calculate the

eigenvalue and to check the convergence of sources.

2.4. OPENMP Parallelization

In addition to MPI, OPENMP is applied to reduce the

computing time. Each MPI process calls OPENMP

threads, and the OPENMP threads distribute work with

shared memory allocated for each MPI process.

Parallelization is generally most efficient when

implemented at the coarsest level as possible if enough

work is shared. This is done by parallelizing azimuthal

angles as shown in Fig. 1. The loops for

upward/downward sweepings and planes are not

candidates for OPENMP parallelization because planes

need to be swept sequentially (such as Gauss-Seidel) in

the assembly-wise domain decomposition. In the

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 17-18, 2018

OPENMP parallelization, it is important to consider the

data synchronization because they can access the same

variables during work sharing. If the azimuthal angle is

parallelized, it is not needed to give an effort to

synchronize the angular flux because the OPENMP

threads use different memory locations with their own

azimuthal angle indexes. This is possible because a flux

change and outgoing angular flux, which are calculated

in innermost loop in Fig. 1, are stored in the angular

flux variable with the azimuthal angle index. In other

words, the angular fluxes are synchronized implicitly

because the angular flux variable has an index of

azimuthal angle, and the angle is decomposed by

OPENMP threads. The only data that needs to be

synchronized within the OPENMP loop is CMFD

currents at pin-cell boundaries. The memory size of

CMFD currents are much smaller than MOC fluxes,

thus synchronizing the current is not a big burden.

OPENMP is also uses many subroutines in STREAM,

including the azimuthal angle loop in the 3D transport

solver, but it is not treated in this paper.

2.5. Numerical Results

The performance of the parallel algorithm was

examined using a 3x3 mini-core problem. The test case

has 9 fuel assemblies. The UOX and MOX fuel

assemblies, which are same assemblies as in the 3D

C5G7 problem [3], are placed in the min-core with a

checkerboard configuration. The number of flat source

regions in the 2D plane is 41,616, and the number of

axial planes is 21. The following MOC conditions are

used: 0.05 cm ray spacing, 48 azimuthal angles, and 10

polar angles.

Fig. 2. Speed up factor for 3x3 mini-core problem.

Table III: Elapsed time for 3x3 mini-core problem.

of threads ×

of processes

Simulation time (sec)

Total

simulation

Loop for

azimuthal angle

1 3,298 2,681

9 406 316

72 90 43

The speed up factor and simulation time are shown in

Fig. 2 and Table III, respectively. As shown in the

figure and table, the loop for azimuthal angle is well

parallelized with a speed up factor of 62 when 72

threads and processes (i.e., 9 MPI × 8 OPENMP) are

used. The calculation efficiency is about 87 %. On the

other hand, the efficiency of the overall simulation is

about 51 %. There are several reasons for this

degradation. First, the parallel calculation is not fully

implemented. The parts for flux calculations outside the

azimuthal angle, and routines for CMFD are needed to

be improved to utilize the multi cores. From now on,

the loop for the azimuthal angle is focused to be

parallelized because it is the most time consuming part

in the 3D calculation. Second, elapsed time for MPI

communication is inevitable part when the MPI is used.

STREAM is being developed, and it is expected to be

improved in the future.

3. Conclusions

The neutron transport code STREAM has been

parallelized to solve a large size 3D problem. The

2D/3D method and its characteristic have been

described. The hybrid MPI/OPENMP parallel algorithm

has been developed with consideration of the

characteristic of the 2D/3D method. STREAM adopts

assembly-wise domain decomposition to store required

memory in distributed storage. The assembly domains

are parallelized in the transport solver. In addition to

enhancing performance, OPENMP is applied and work

for the azimuthal angles is distributed to each of the

OPENMP thread. A 3x3 mini-core problem was solved

to examine the performance of the parallel algorithm,

and it was confirmed that the developed algorithm was

implemented successfully and showed a possibility to

be used in 3D whole core problems. In future work, the

parallel algorithm will be implemented and improved

for the whole code, and larger sized p!troblems, i.e., 3D

whole core problem, will be solved.

ACKNOWLEDGMENTS

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIT).

(No.NRF-2016M2B2A9A02945205)

REFERENCES
[1] Y. Zheng, S. Choi, D. Lee, A new approach to three-

dimensional neutron transport solution based on the method of

characteristics and linear axial approximation, Journal of

Computational Physics. vol 350, pp. 25–44, 2017.

[2] A. Marin-Lafleche, M.A. Smith, C.H. Lee, PROTEUS-

MOC: a 3D deterministic solver incorporating 2D method of

characteristics, in: Proc. M&C 2013, Sun Valley, May 5–9,

2013.

[3] M.A. Smith, E.E. Lewis, B.C. Na, Benchmark on

Deterministic Transport Calculations without Spatial

Homogenization, NEA/NSC/DOC(2005)16, 2005.

