

SEOUL NATIONAL UNIVERSITY

The Implementation of Mixing Vane Directed Cross Flow Model in CUPID for Subchannel Scale T/H Analysis

Seul-Been Kim, Jae-Ho Lee, Goon-Cherl Park, Hyoung-Kyu Cho*

Nuclear Thermal Hydraulic Engineering Laboratory Department of Nuclear Engineering Seoul National University, Republic of Korea

2018-05-17

- 1. Introduction
- 2. Implementation of subchannel models on CUPID
- 3. Verification of models for single assembly of APR1400
- 4. Current status
- 5. Conclusion

Background

- Multi-physics reactor core analysis with high fidelity thermal-hydraulic simulation tool
- Maintaining higher safety standards
 - Coupled 3D methods are the most suitable tools for transient analysis with asymmetric power.
- Minimizing economic uncertainty
 - Optimization of fuel design and fuel cycle costs
- Subchannel scale whole core pin-by-pin analysis
 - COBRA-TF (CTF in CASL, NURESAFE)
 - COBRA-FLX (ARCADIA code system in AREVA)
 - SUBCHANFLOW (KIT)
 - MATRA (KAERI)

MSLB analysis at the HZP condition, CASL (Kucukboyaci et al. (2015))*

Rod ejection analysis using COBRA-FLX (DNBR and film boiling) (Gensler et al. (2013))**

*) Kucukboyaci et al., COBRA-TF Parallelization and Application to PWR Reactor Core, CASL-U-2015-0167-000, 2015.
**) Gensler et al., LWR Core Safety Analysis with Areva's 3-dimensional Methods, International Journal for Nuclear Power, 2013.

Background

- MATRA
 - Developed by KAERI (based on COBRA)
 - Very effective for reactor core design and evaluation of DNBR margin
 - Achievement of required accuracy within reasonable time
 - Systematically validated against large experimental database
 - Features not optimized for accident analyses
 - Homogeneous Equilibrium Model (HEM)
 - Spatial marching scheme in the axial direction
- CUPID (KAERI's inhouse code)
 - Has been developed by KAERI for multi-dimensional two-phase flow simulation
 - Physical models
 - Two-fluid model for two-phase flow
 - \Rightarrow **Velocity difference** between two phases
 - Numerical solver
 - Highly parallelized, pressure correction equation for
 - whole computational domain.
 - \Rightarrow Reverse flow or cross-flow dominant cases

- \Rightarrow **Velocity difference** between two phases
- \Rightarrow Reverse flow or cross-flow dominant cases

Validation of PNL 7x7 flow blockage test (S.J. Yoon et al (2018))*

*) YOON, Seok Jong, et al. APPLICATION OF CUPID FOR SUBCHANNEL-SCALE THERMAL-HYDRAULIC ANALYSIS OF PRESSURIZED WATER REACTOR CORE UNDER SINGLE-PHASE CONDITIONS. Nuclear Engineering and Technology, 2018.

Plan for multi-scale analysis using CUPID

- Open medium approach with turbulence model and non-drag force models
 - Similar with commercial CFD codes
- Porous medium approach with flow regime map and corresponding constitutive models
 - Steam generator(pipes), reactor core(fuel rods)
- Unstructured grid
 - Collocated grid (Cell-centered)

Previous work

- The implementation of fundamental subchannel models on CUPID
 - Crossflow model
 - Friction factor model : axial direction

$$\Delta P = -\frac{1}{2} \left(\frac{f}{d_{hy}} + K' \right) \left(\frac{G_k^2}{\rho_k} \right)$$

- Turbulent mixing and void drift model
 - EM (Equal Mass exchange)
 - EVVD (Equal Volume exchange and Void Drift)

- Form loss model : lateral direction

$$\Delta P = -\frac{K_G}{2} \left(\frac{W_{IJ,k} |W_{IJ,k}|}{l_{IJ} \rho_k s_{IJ}} \right)$$

The validation of subchannel models implemented on CUPID against various experiments

Tests			CUPID
Single- phase	Unheated	CNEN 4×4 mixing test	0
		PNL 7×7 flow blockage test	0
		CE 15×15 inlet jetting test	0
		Weiss' 14×14 inlet blockage test	0
	Heated	PNNL 2×6 buoyancy effect test	0
Two- phase	Unheated	RPI air-water mixing test	0
		Tapucu two-channel test	0
		Van der Ros two-channel test	0

Previous work and objectives of the present study

- Preliminary APR1400 whole core simulation
 - MPI domain decomposition
 - Wall-clock time: 38 minutes with 100 cores
 - Volumetric heat source in the coolant

Coolant temperature and power density distribution

- In the present study,
 - To extend the capability of CUPID to subchannel scale T/H analysis using more realistic models
 - ✓ Implementation of grid-directed cross flow model
 - ✓ Improvement of fuel rod heat conduction model
 - Demonstration of the whole core analysis using implemented models

1. Introduction

2. Implementation of subchannel models on CUPID

- 3. Verification of models for single assembly of APR1400
- 4. Current status
- 5. Conclusion

Grid-directed cross flow model

- Spacer grid and mixing vane
 - Prevention of rod bundle vibration
 - Enhancement of wall heat transfer

Momentum equation (CTF) $M_k = f^2 u_l \rho_l A \times u_l$

f: Lateral convection factor
(lateral velocity/axial velocity) M_k : Lateral momentum transfer
due to grid-directed cross flow model

Non-mixing vane spacer grid(up) and mixing vane spacer grid(down) of PSBT 5x5 experiment

9

23

*) A. RUBIN et al., OECD/NRC Benchmark based on NUPEC PWR subchannel and bundle tests (PSBT), Volume I: Experimental Database and Final Problem Specifications. US NRC OECD Nuclear Energy Agency (2010).

Grid-directed cross flow model

- Direction of coolant transfer was simplified.
 - Perpendicular with subchannel face
- Staggered grid : CTF
- Collocated grid : CUPID

10 23

Grid-directed cross flow model for collocated grid

- 1. Grid-directed cross flow model was additionally implemented into scalar equation.
 - Momentum equation

 $M_k = f^2 u_l \rho_l A \times u_l$

- *f* : Lateral convection factor (lateral velocity/axial velocity)
- *M_k* : Lateral momentum transfer due to grid-directed cross flow model

- Mass equation $M_e = f u_l \rho_l A$
- Energy equation $M_h = f u_l \rho_l A \times h_l$
 - M_e, M_h : Lateral mass and energy exchange due to grid-directed cross flow model
- 2. Additional turbulent mixing coefficient (β') was applied.
 - Flow scattering (Zimmermann, M. (2015)*)

 $- \beta'$: Determined from code to code comparison between CUPID and CTF

$$V^{T} = \frac{\beta G_{avg}}{\rho_{avg}} s_{gap} \quad \beta = \beta_{origin} + \beta'$$

Turbulent mixing model
$$M_{k}^{T} = V^{T} (\rho_{f} v_{f} - \rho_{g} v_{g}) \theta \left[\alpha_{v,J} - \alpha_{v,I} - (\alpha_{v,J} - \alpha_{v,I})_{equil} \right]$$
$$M_{e}^{T} = V^{T} (\rho_{f} - \rho_{g}) \theta \left[\alpha_{v,J} - \alpha_{v,I} - (\alpha_{v,J} - \alpha_{v,I})_{equil} \right]$$

$$M_e^T = V^T (\rho_f h_f - \rho_g h_g) \theta \left[\alpha_{v,J} - \alpha_{v,I} - (\alpha_{v,J} - \alpha_{v,I})_{equil} \right]$$
$$M_h^T = V^T (\rho_f h_f - \rho_g h_g) \theta \left[\alpha_{v,J} - \alpha_{v,I} - (\alpha_{v,J} - \alpha_{v,I})_{equil} \right]$$

 $\frac{11}{23}$

*) Zimmermann, Markus. Development and Application of a Model for the Cross-Flow Induced by Mixing Vane Spacers in Fuel Assemblies. Diss. KIT-Bibliothek, 2015

Grid-directed cross flow model

- Guide tube consideration
 - CE type fuel assembly (5 guide tubes)
 - 4 guide tubes
 - Coolant passes through the guide tube
 - 1 guide tube
 - Coolant slightly blocked by the guide tube

Input of coolant direction for grid-directed cross flow model

Direction of coolant transfer due to mixing vane in the single assembly

12 23

Direction of coolant transfer near the guide tube

Fuel rod heat conduction model

- Fuel rod heat conduction model improvement
 - Subchannel-rod connectivity : 1~4 rods
 - One-dimension heat conduction equation, quarter fuel rod
 - Simple gap heat conduction model
 - HTC of gap between pellet and cladding

$$h_g = \frac{k_{gas}}{\delta_{eff}} + \frac{\sigma}{\left(1/\varepsilon_f\right) + \left(1/\varepsilon_c\right)} \frac{T_{fo}^4 - T_{ci}^4}{T_{fo} - T_{ci}}$$

 $\begin{array}{ll} \delta_{eff} & : \text{effective gap width,} \\ \sigma & : \text{Stefan-Boltzman constant,} \\ \varepsilon_f, \varepsilon_c & : \text{surface emissivity of the fuel and cladding,} \\ T_{fo} & : \text{fuel surface temperature,} \\ T_{ci} & : \text{cladding inner surface temperature.} \end{array}$

Subchannel-rod connectivity : Depending on the location

1. Introduction

2. Implementation of subchannel models on CUPID

3. Verification of models for single assembly of APR1400

- 4. Current status
- 5. Conclusion

Verification of grid-directed cross flow model

- Plus7 fuel assembly
- Power distribution
 - From the neutronics code nTRACER*
 - Pin-wise power distribution from maximum power assembly

Lateral velocity distribution

Coolant temperature distribution at he outlet

Verification of grid-directed cross flow model

Comparison with CUPID and CTF

- Centerline extraction
 - Liquid temperature
 - Axial liquid velocity

Verification of grid-directed cross flow model

- Comparison with CUPID and CTF : mixing vane model off
 - Temperature comparison between CUPID and CTF
 - Axial velocity comparison between CUPID and CTF

1. Introduction

- 2. Implementation of subchannel models on CUPID
- 3. Verification of models for single assembly of APR1400

4. Current status

5. Conclusion

APR1400 whole core preliminary simulation

- Geometry of whole core
 - Normal subchannel
 - Water gap, guide tube, shroud
- Total cells : 3,226,576

APR1400 whole core preliminary simulation

- Using fuel rod heat conduction model
- Distribution of
 - Liquid temperature
 - Liquid velocity
 - Cladding outer surface temperature

Parameters	
Problem time for steady-state	2.0 sec
Number of cores	136
Total wall-clock time	41 min

APR1400 whole core preliminary simulation

- Using grid-directed cross flow model
- Distribution of
 - Liquid temperature

Parameters

1. Introduction

- 2. Implementation of subchannel models on CUPID
- 3. Verification of models for single assembly of APR1400
- 4. Current status

5. Conclusion

Conclusion

- The grid-directed cross flow model was implemented for subchannel scale T/H analysis.
 - Grid-directed cross flow model applied in the mass, momentum and energy equation.
 - Additional turbulent mixing coefficient (β') was applied.
 - Modification was made to consider the difference between the collocated and staggered grid systems.
- The verification of grid-directed cross flow model against single assembly of APR1400 was conducted.
 - Liquid and cladding surface temperature, liquid velocity
- In the future,
 - Quantitative analysis for the mixing induced by the grid-directed cross flow model will be conducted for the validation of models.
 - PSBT benchmark, etc.
 - Wall heat transfer enhancement by a spacer grid needs to be considered.

Thank you for your attention!