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Background 

 Multi-physics reactor core analysis with high fidelity thermal-hydraulic simulation tool 

 Maintaining higher safety standards 

 Coupled 3D methods are the most suitable tools for 

        transient analysis with asymmetric power.  

 Minimizing economic uncertainty 

 Optimization of fuel design and fuel cycle costs 

 

 Subchannel scale whole core pin-by-pin analysis 

 COBRA-TF (CTF in CASL, NURESAFE) 

 COBRA-FLX (ARCADIA code system in AREVA) 

 SUBCHANFLOW (KIT) 

 MATRA (KAERI) 

(Kucukboyaci et al. (2015))* 

(Gensler et al. (2013))** 

*)    Kucukboyaci et al., COBRA-TF Parallelization and Application to PWR Reactor Core, CASL-U-2015-0167-000, 2015. 
**) Gensler et al., LWR Core Safety Analysis with Areva’s 3-dimensional Methods, International Journal for Nuclear Power, 2013. 
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Background 

 MATRA 

 Developed by KAERI (based on COBRA) 

 Very effective for reactor core design and evaluation of DNBR margin 

– Achievement of required accuracy within reasonable time 

 Systematically validated against large experimental database 

 Features not optimized for accident analyses 

– Homogeneous Equilibrium Model (HEM) 

– Spatial marching scheme in the axial direction 
 

 CUPID (KAERI’s inhouse code) 

 Has been developed by KAERI for multi-dimensional two-phase flow simulation 

 Physical models 

– Two-fluid model for two-phase flow 

     ⇒ Velocity difference between two phases 

 Numerical solver 

– Highly parallelized, pressure correction equation for 

      whole computational domain. 

   ⇒ Reverse flow or cross-flow dominant cases 

*) YOON, Seok Jong, et al. APPLICATION OF CUPID FOR SUBCHANNEL-SCALE THERMAL–HYDRAULIC ANALYSIS OF PRESSURIZED WATER REACTOR CORE UNDER SINGLE-PHASE CONDITIONS. Nuclear Engineering and Technology, 2018. 

Validation of PNL 7x7 flow blockage test 
(S.J. Yoon et al (2018))* 

 

 

 

 

 

 

 ⇒ Velocity difference between two phases 

 ⇒ Reverse flow or cross-flow dominant cases 
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Plan for multi-scale analysis using CUPID 

 

 

 

 

 

 

 

 

 

 Open medium approach with turbulence model and non-drag force models 

 Similar with commercial CFD codes 

 Porous medium approach with flow regime map and corresponding constitutive models 

 Steam generator(pipes), reactor core(fuel rods) 

 Unstructured grid 

 Collocated grid (Cell-centered) 

 

 

 

 

 

3D CFD scale (CUPID) 3D subchannel scale (CUPID) 1D system scale (MARS) 

reactor  
vessel 
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Previous work 

 The implementation of fundamental subchannel models on CUPID 

 Crossflow model 

– Friction factor model : axial direction 

 

 

 Turbulent mixing and void drift model 

– EM (Equal Mass exchange) 

– EVVD (Equal Volume exchange and Void Drift) 
 

 The validation of subchannel models implemented on CUPID against various experiments 
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Tests CUPID 

Single-
phase 

Unheated 

CNEN 4×4 mixing test O 

PNL 7×7 flow blockage test O 

CE 15×15 inlet jetting test O 

Weiss’ 14×14 inlet blockage test O 

Heated PNNL 2×6 buoyancy effect test O 

Two-
phase 

Unheated 

RPI air-water mixing test O 

Tapucu two-channel test O 

Van der Ros two-channel test O 

 

 

– Form loss model : lateral direction 
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Previous work and objectives of the present study 

 Preliminary APR1400 whole core simulation 

 MPI domain decomposition 

 Wall-clock time: 38 minutes with 100 cores 

 Volumetric heat source in the coolant 

 

 

 

 

 

 

 In the present study, 

 To extend the capability of CUPID to subchannel scale T/H analysis using more realistic models 

 Implementation of grid-directed cross flow model 

 Improvement of fuel rod heat conduction model 

 

 Demonstration of the whole core analysis using implemented models 

 

Velocity distribution Coolant temperature and power density distribution 
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Grid-directed cross flow model 

 Spacer grid and mixing vane 

 Prevention of rod bundle vibration 

 Enhancement of wall heat transfer 

 

 

 

 

 Momentum equation (CTF) 𝑀𝑘 = 𝑓2𝑢𝑙𝜌𝑙𝐴 × 𝑢𝑙  

𝑓           : Lateral convection factor 
               (lateral velocity/axial velocity) 
𝑀𝑘         : Lateral momentum transfer 
              due to grid-directed cross flow model 

*) A. RUBIN et al., OECD/NRC Benchmark based on NUPEC PWR subchannel and bundle tests (PSBT), Volume I: Experimental Database and Final Problem Specifications. US NRC OECD Nuclear Energy Agency (2010).  

Non-mixing vane spacer grid(up) and 
mixing vane spacer grid(down) of 
PSBT 5x5 experiment 
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Grid-directed cross flow model 

 Direction of coolant transfer was simplified. 

 Perpendicular with subchannel face 

 Staggered grid  : CTF 

 Collocated grid : CUPID 

 

Perpendicular 
with the  
cell face 

: Scalar mesh cell 

: y-direction 

  momentum  

  mesh cell 

: x-direction 

  momentum  

  mesh cell 

CTF(staggered grid) 

: Mesh cell 

CUPID (collocated grid) 
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Grid-directed cross flow model for collocated grid 

1. Grid-directed cross flow model was additionally implemented into scalar equation. 

 

 

 

 
 

2. Additional turbulent mixing coefficient (𝛽′) was applied. 

 Flow scattering (Zimmermann, M. (2015)*) 

 

 

 Momentum equation 𝑀𝑘 = 𝑓2𝑢𝑙𝜌𝑙𝐴 × 𝑢𝑙  

𝑓           : Lateral convection factor 
               (lateral velocity/axial velocity) 
𝑀𝑘         : Lateral momentum transfer 
              due to grid-directed cross flow model 

𝑀𝑒 = 𝑓𝑢𝑙𝜌𝑙𝐴 

𝑀ℎ = 𝑓𝑢𝑙𝜌𝑙𝐴 × ℎ𝑙  

𝑀𝑒 , 𝑀ℎ : Lateral mass and energy exchange 
              due to grid-directed cross flow model 

 Mass equation 

 Energy equation 

*) Zimmermann, Markus. Development and Application of a Model for the Cross-Flow Induced by Mixing Vane Spacers in Fuel Assemblies. Diss. KIT-Bibliothek, 2015. 

𝐶𝛽
𝑔𝑟𝑖𝑑 = Θ𝑡𝑚,𝑔𝑟𝑖𝑑(𝑧, 𝛾, 𝜖) ∙ 𝐶𝛽  

𝐶𝛽
𝑠𝑝,𝑣𝑑 = Θ𝑣𝑑,𝑔𝑟𝑖𝑑(𝑧, 𝛾, 𝜖) ∙ 𝐶𝛽

𝑣𝑑  

𝐶𝛽
     : turbulent mixing coeff. 

𝐶𝛽
𝑣𝑑: void drift coeff. 

𝑧 : axial position 
𝛾 : mixing vane angle 
𝜖 : blockage ratio 

(Zimmermann, M. (2015)* 

𝑉𝑇 =
𝛽𝐺𝑎𝑣𝑔

𝜌𝑎𝑣𝑔
𝑠𝑔𝑎𝑝 

𝑀𝑘
𝑇 = 𝑉𝑇 𝜌𝑓𝑣𝑓 − 𝜌𝑔𝑣𝑔 𝜃 𝛼𝑣,𝐽 − 𝛼𝑣,𝐼 − 𝛼𝑣,𝐽 − 𝛼𝑣,𝐼 𝑒𝑞𝑢𝑖𝑙

 

𝑀𝑒
𝑇 = 𝑉𝑇 𝜌𝑓 − 𝜌𝑔 𝜃 𝛼𝑣,𝐽 − 𝛼𝑣,𝐼 − 𝛼𝑣,𝐽 − 𝛼𝑣,𝐼 𝑒𝑞𝑢𝑖𝑙

 

𝑀ℎ
𝑇 = 𝑉𝑇 𝜌𝑓ℎ𝑓 − 𝜌𝑔ℎ𝑔 𝜃 𝛼𝑣,𝐽 − 𝛼𝑣,𝐼 − 𝛼𝑣,𝐽 − 𝛼𝑣,𝐼 𝑒𝑞𝑢𝑖𝑙

 

Turbulent mixing model 

𝛽 = 𝛽𝑜𝑟𝑖𝑔𝑖𝑛 + 𝛽′ 

– 𝛽′ : Determined from code to code 

             comparison between CUPID and CTF 
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Grid-directed cross flow model 

 Guide tube consideration 

 CE type fuel assembly (5 guide tubes) 

– 4 guide tubes  

– Coolant passes through the guide tube 

– 1 guide tube 

–  Coolant slightly blocked by the guide tube 

 

 

Direction of coolant transfer due to mixing vane 

in the single assembly 

Direction of coolant transfer near the guide tube 

…
 

…
 

Input of coolant direction for grid-directed 

cross flow model 

Cell number +x  –x  +y  -y 
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Fuel rod heat conduction model 

 Fuel rod heat conduction model improvement 

 Subchannel-rod connectivity : 1~4 rods 

 One-dimension heat conduction equation, quarter fuel rod 

 Simple gap heat conduction model 

– HTC of gap between pellet and cladding 

 

 

 

 

 

 

 

 

 

Subchannel-rod connectivity 
: Depending on the location ℎ𝑔 =

𝑘𝑔𝑎𝑠

𝛿𝑒𝑓𝑓
+

𝜎

1/𝜀𝑓 + 1/𝜀𝑐

𝑇𝑓𝑜
4 − 𝑇𝑐𝑖

4

𝑇𝑓𝑜 − 𝑇𝑐𝑖
  

𝛿𝑒𝑓𝑓  
𝜎 
𝜀𝑓, 𝜀𝑐 

𝑇𝑓𝑜 

𝑇𝑐𝑖 

: effective gap width, 
: Stefan-Boltzman constant, 
: surface emissivity of the fuel and cladding, 
: fuel surface temperature, 
: cladding inner surface temperature. 
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Verification of grid-directed cross flow model 

 Plus7 fuel assembly 

 Power distribution 

 From the neutronics code nTRACER* 

 Pin-wise power distribution from maximum power assembly 

Coolant temperature distribution at he outlet 

Guide tube 

Center subchannel 

      Lateral velocity distribution 

Corner subchannel 

(1) Without 

 mixing vane model 

∆𝑻𝒎𝒂𝒙= 7.5K 

(2) With 

 mixing vane model 

(3) With  mixing vane 

model and 𝛽′ 

∆𝑻𝒎𝒂𝒙= 3.8K 

∆𝑻𝒎𝒂𝒙= 3.0K 
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Verification of grid-directed cross flow model 

 Comparison with CUPID and CTF 

 Centerline extraction 

– Liquid temperature 

– Axial liquid velocity 

 

 CUPID 
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Verification of grid-directed cross flow model 

 Comparison with CUPID and CTF : mixing vane model off 

 Temperature comparison between CUPID and CTF 

 Axial velocity comparison between CUPID and CTF 
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APR1400 whole core preliminary simulation 
 Geometry of whole core 

 Normal subchannel 

 Water gap, guide tube, shroud 

 Total cells : 3,226,576 

 

 

Water gap 

Guide 
tube 

Shroud 
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APR1400 whole core preliminary simulation 
 Using fuel rod heat conduction model 

 Distribution of 

 Liquid temperature 

 Liquid velocity 

 Cladding outer surface temperature 

 

 

 

 

Parameters 

Problem time for steady-state 2.0 sec 

Number of cores 136 

Total wall-clock time 41 min 
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APR1400 whole core preliminary simulation 
 Using grid-directed cross flow model 

 Distribution of 

 Liquid temperature 

 

Parameters 

Problem time for steady-state 2.0 sec 

Number of cores 136 

Total wall-clock time 41 min → 98 min 
Without 

mixing vane model 
With 

mixing vane model 

…
 

… 
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Conclusion 
 The grid-directed cross flow model was implemented for subchannel scale T/H analysis. 

 Grid-directed cross flow model applied in the mass, momentum and energy equation. 

 Additional turbulent mixing coefficient (𝛽′) was applied. 

– Modification was made to consider the difference between the collocated and staggered grid systems. 

 

 The verification of grid-directed cross flow model against single assembly of APR1400 was  

      conducted. 

 Liquid and cladding surface temperature, liquid velocity 

 

 In the future, 

 Quantitative analysis for the mixing induced by the grid-directed cross flow model will be conducted for 

the validation of models. 

– PSBT benchmark, etc. 

 Wall heat transfer enhancement by a spacer grid needs to be considered. 
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Thank you for your attention! 


