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1. Introduction

Within a Research Reactor Development Project by
KAERI, a Hybrid Low Power Research Reactor (H-
LPRR) is being under consideration targeted on national
education and training for nuclear start-up countries.

A nuclear reactor which is Ultimately Safe, Simple,
and Cheap (USSC) must be on the top of the Top-Tier
Requirements (TTR) for the H-LPRR.

Safety Classification, part of a systematic safety
assessment, is the starting point for reactor design. This
paper presents a preliminary safety classification of H-
LPRR as well as the design information based on a
preliminary deterministic safety analysis.

2. Regulatory position on Safety Classification

In this section some regulatory positions on safety
classification of nuclear facilities are described to give a
general overview about classification performed over
the world.

2.1 Korean Nuclear Safety Law and US 10 CFR 50

Safety-related Structures, Systems, and Components
(SSCs) are defined as classified design features of
significance to the nuclear safety in accordance with the
notice by the Nuclear Safety and Security Commission
(NSSC) in the nuclear safety law [1~11].

The maximum allowable exposure radiation dose is
defined as the limit in the nuclear safety decree.

Safety-related SSCs shall be designed, manufactured,
installed, tested, and inspected to the extent of the safety
significance by the nuclear safety regulation.

SSCs in pressurized light water reactors (PWR) are
classified as one of safety class 1, safety class 2, safety
class 3, and non-nuclear safety (NNS) in accordance
with the notice by the Nuclear Safety and Security
Commission (NSSC). In this notice, safety functions are
defined as 1) to maintain the pressure-retaining
components integrity, 2) to shutdown reactor and
maintain it in a safe shutdown state, and 3) to prevent or
mitigate off-site exposure within the limit as given in 10
CFR 100.11 [1~11].

Codes and standards for each classification shall be in
accordance with the KEPIC codes and standards by the
notice, which includes quality assurance requirements,
construction  requirements, seismic  requirements,
qualification requirements, Control and Instrumentation

requirements, and electric requirements, and so on[4,11].

2.2 IAEA standards for Research Reactors

International standards provided a systematic and
comprehensive approach to classify SSCs according to
the significance to the nuclear safety in a technology-
neutral way including graded approaches for application
into research reactors [12~21].

An essential set of tasks includes the safety
fundamentals on the top, general safety requirements for
safety assessment of the general safety requirements,
safety of research reactors of specific safety
requirements, and classification and graded approach
from safety guides as given in the following figure.
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The nuclear safety should be based on the concept of
defense in depth, safety margin, and multiple barriers,
which must be assessed mainly for radiation protection,
safety functions, and engineering aspects, and verified
by the safety analysis of a specific design as in the
following figure by IAEA standard [15].
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Of the engineering aspects considering overall safety
of nuclear facilities, safety classification is major
process to reach a design goal of nuclear facilities. The
classification process starts from basic understanding of
a plant design followed by identification of all safety
functions and design provisions. The last activity is to
select applicable engineering design rules for SSCs as in
the following figure by IAEA standard [20]. But the
TAEA standards do not force to follow any specific rules
but are open to select .
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FIG. 1. Flow chart indicating the classification process

2.3 Others

The office of nuclear regulation (ONR) provides its
inspectors with a guidance for categorization and
classification, which is very explanatory [22].

The roles and scheme of safety function
categorization and classification, the initial safety
function categorization, and off/on site frequency/
consequences regions were given as an acceptance
criteria for further classification as in the following
figures by the ONR.
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Figure 1 — Role of safety function categornisation {green box) and SSC
classification (blue box) within the lifecycle model (“V-diagram”)
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The guideline by the KINS [23] follows the
regulatory guide by the USNRC [24] for research
reactor application, which gives different criteria [25]
for radiation exposure.

A practical reference about the Category III reactor,
of which the first subgroup (< 1 MW) includes the pool
type reactors that generally do not require active-
systems for reactor heat removal, which is adequately
removed by natural convection during normal
operations, proposes a realistic approach and an
example to determine the classification of the SSCs
depending on the significance to the nuclear safety.

3. Preliminary Safety Classification

In this section a preliminary classification process is
described for the H-LPRR following the contents in the
IAEA standards [12~21]. A typical process includes
understanding design with acceptance criteria, defense
in depth, categorization (initial classification),
classification, and verification.

2.1 Understanding Design
A succinct overview of the conceptual design, the H-
LPR is as given in the following table.

Reactor Open pool in tank
Thermal
Power =30 kWay
Neutron flux ~4.0><10" (n/em-sec)
Core
Size 53.7cm>53.7cm><53cm
Fuel

. . 27¢m>27¢m><39.6cm
dimension

Fuel Shape Rod type
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Type U0,

Enrichment 4.65 wt%

Cladding Zr-4

Material Light water
Coolant Cooll

ooling . .
method Natural circulation

Moderator Material Light water
Reflector Material Beryllium, Carbon

Material B4C
Control
Rods .

Function Power control
Reactor Material Zr-4
Structure

Ultimately Safe, Simple, and Cheap (USSC) on the
top of the TTR for the H-LPRR should be realized
within the ALARA (As Low As Reasonably
Achievable) as well as the stringent acceptance criteria
for exposure dose of radiation without any active
systems or components.

2.2 Defense-in-Depth

Following tables present the defense-in-depth for the
safety functions such as reactivity control, core cooling,
and water inventory control

There is not any safety function but design provisions
that must be assured by the deterministic safety analysis
for the conceptual design.

Level Functions and Design Provisions To be Assured

1 Conservative selection of fuel properties
Conservative selection of fuel oxidation
Conservative design of core (inherent safety
features)
Conservative
design/manufacturing/construction/installatio
n/inspection of Fuel, Core, Core Structures
Quality assurance of fuel, core, core
structures
Qualification
Fuel/Core management
Power Control System
3 No protection, shutdown
Emergency Operating Procedures

No fuel failure

Level Functions and Design Provisions To be Assured
1 Quality assurance of core flow by
commissioning
Conservative selection of flow
2 Cooling by pool water during LOEP
Abnormal Operating Procedures

Necessity of Make-up
Operational exposure
Confinement integrity

3 No protection, shutdown No fuel failure
Emergency Operating Procedures
Level Functions and Design Provisions To be Assured

1 Conservative selection of fuel properties
Conservative selection of fuel oxidation
Conservative design of core (inherent safety
features)
Conservative
design/manufacturing/construction/installatio
n/inspection of Fuel, Core, Core Structures,

pool liner

Quality assurance of fuel, core, core
structures, pool liner
Qualification

Fuel/Core management

2 Normal Make-up Necessity of Make-up
Abnormal Operating Procedures Operational exposure
Confinement integrity

3 No protection, shutdown No fuel failure

Emergency Operating Procedures

2.3 Categorization and Classification

An initial categorization for reactivity control looks
like the following figure: all SSCs are categorized as
“non-categorized” since, with no SSCs except for the
design provision, there will be no hazards from ionizing
radiation hazards to the workers and public by using the
H-LPRR, which shall be verified by a deterministic
safety analysis. The classification will be followed by
the initial categorization according to the significance to
the nuclear safety.
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2.5 Verification

An initial classification is assured by the deterministic
safety analysis with modeling of the H-LPRR as given
in the figure below.
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was assured by the analysis about the fuel failure
mechanism, PCMI [27, 28] during pre-DNB as given in

The transient was given as for the power because of
the figure.
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The initial classification, ‘“Non-Categorized”, was
1004 verified to be applicable by the analysis. Then the
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2.7 Future works
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A set of design bases should be firmly established for
more realistic engineering works. Based on the bases
iterative assessments should be performed following this
preliminary classification complemented by
probabilistic safety analysis.

3. Conclusions

A preliminary safety classification was prepared for
the H-LPRR targeted on countries starting nuclear
engineering based on the IAEA standards. The
classification was supported by a deterministic safety
analysis for the conceptual design evaluation.

The classification should be refined by the future
works such as justification of design bases, detailed
design, comprehensive deterministic safety analysis with
probabilistic safety analysis, and design verification.
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