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1. SUMMARY

Integrated PHWR severe accident progression and
consequence assessment code ROSHNI [1], developed
and tested initially for CANDU-6 reactors such as at
Wolsong, improves significantly on the other computer
codes that were developed over 30 years ago when
modeling decisions were constrained by limited
computing power. Those codes served well the
requirements of 20-30 years ago. For today they are
severely lacking. Other existing integrated PHWR severe
accident computer codes have gross simplifications in
reactor core modelling, materials, fluids and phenomena
rendering the results academically interesting but
practically suspect and wanting for easily implementable
improvements. They do, however, excel in their
computational speed (minutes of computations instead of
days and hours for ROSHNI for a 24 hour station blackout
accident progression assessment) because they compute so
little.

ROSHNI differs from codes such as ISAAC [2] and
MAAP-CANDU [3] and adaptations of LWR codes [4], in
firstly the detail in which the reactor is modeled, and
secondly in its more comprehensive consideration of
important PHWR related severe accident phenomena,
material behaviour and progression pathways.

ROSHNI incorporates a more detailed modelling of the
reactor core. All horizontal PHWR reactor channels with
all their fuel bundles, end fittings and feeders are
modelled and in far greater detail than in other codes.
Thermo-chemical transient behaviour of about 80,000
different fuel channel entities within the core is considered
simultaneously. With that detail ROSHNI is able to
provide information on phenomena and source terms that
could not previously be generated. It has an advanced,
more CANDU specific consideration of solid debris
behaviour in the Calandria vessel. The code is designed to
grow into and/or use its voluminous results in a severe
accident simulator for training. It uses a multi-step
predictor-corrector numerical solution scheme as opposed
to the simple one time step Euler method in other codes.

Compared to risk profiles of modern power reactor
designs, operating PHWRs are relatively obsolete in their
inherent design with documented deficiencies in material
selection, overpressure protection and instrumentation.
They also exhibit more severe accident consequences;

have undergone almost no design upgrades and
effectiveness of some ad-hoc accident mitigation
measures like PARS and Filtered Venting is tenuous at
best. A best effort code such as ROSHNI can be
instrumental in identifying the risk reduction benefits of
undertaking design improvements and provide guidance
on optimization of measures that have been proposed to
fix the known design and accident management
deficiencies.

Special features of the ROSHNI code

e No adaptation of any LWR code; direct, dedicated
horizontal channel PHWR core models.

e Integrated reactor and system modelling with appropriate
feedbacks

e Heat Transport System model dedicated to severe
accidents— include P&IC behaviour

e Channel and Core models — significantly improved detail —
all channels and all fuel bundles modelled simultaneously.

e  End fittings and feeders modelled specific to each fuel
channel

e Core debris modelled with consideration of in-core devices

e  Hydrogen source term — includes steel oxidation in feeders,
end fittings and piping

e Fission products — tracks all risk sensitive species

e Failure mechanisms clearly documented and new accident
progression pathways identified and enabled

e Heavy water properties and light water properties as needed

e  Containment — more detailed model

e Integrated Post processing and simple optimization

e Graphics for display of results and visualization of accident
progression

3. ROSHNI MODELLING

A single unit CANDU-6 reactor is from a 700 MWe class
of Generation II reactors. It has 380 horizontal, about 6m
long, ~10 cm diameter fuel channels with 37 element fuel
bundles. Channels are located in a 22x22 matrix with fuel
channels differing from each other by a number of factors
including power, elevation within the Calandria vessel and
feeder geometry. Nominal channel powers vary (Figure 1)
from about 2500 kW to 6600 kW (average 5430 kW) with
channels separated by a square pitch of about 28.6 cm, the
elevation difference between the top and bottom channels
is about 6.65m. The inlet (outlet) feeders range in size
from 3.8 cm (4.9 cm) to 5.9 cm (8.2 cm) and their lengths
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range between 6 to 17m (Figure 2), for a total length of
9,200m. Volume of water in the feeders ranges between 7
and 93 liters for a total volume of about 27,000 liters. The
feeders are present ample surface area (~1,740 m?) for
steel oxidation and a metal mass of over 100 tons. Thus
modelling of feeders individually for all aspects of their
thermo-chemical interactions is important.
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Figure 1: Channel power distribution

It is evident that channels with the same power but
different feeder geometry would have a different state of
coolant starvation at any given time. For example, in a
station blackout scenario following loss of boilers as a
heat sink and reduction of HTS inventory by boiloff down
from header level, the reactor core may contain channels
that are full of water while others are boiling off with yet
others degraded and heating up (Figure 4).
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Figure 2: Variations in feeder lengths

The feeder geometry differences affect a typical severe
accident progression (e.g. station blackout) by virtue of
not only the differences in coolant mass within the feeders
but also the resistance to fluid flows based on feeder
diameters, elevations and lengths. Given that a necessary

condition for a fuel channel to lose its integrity (heatup,
deformation and melting of fuel channel segments under
stress / weight) is a loss of cooling from within and a loss
of moderator water enveloping the channel, the elevation
of the channel within the depleting moderator is also the
governing factor for channel heatup and degradation to
debris in absence of large heat sinks. Additionally,
disassembly of a channel is affected by physical contact
with overlying channels deformed down or disassembled
during the accident. Movement of debris within the core is
also affected by presence of in-core devices (Figure 3),
both horizontal and vertical. Therefore, the core needs to
be modelled with the greatest detail. Previous attempts at
modelling the fuel channels included simplifications in
modelling of fuel channels and fuel bundles. Some codes
modelled the fuel bundle with a single pin, while others
did not model fuel sheaths explicitly. None modelled
feeders for oxidation or in-core devices for influence on
motion of each individual bundle after disassembly into
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Figure 3 : Bundles color coded to include effect of in-core

Flow through channels by simulating the whole HTS thermal hydraulics
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Figure 4: Range of channel behaviors after depletion of
water inventory to the headers.

Thermal hydraulic and thermo-mechanical-chemical
response of all fuel channels and all fuel bundles is
modelled in ROSHNI with considerations of variations in
power, axial power profiles, fuel burnup, feeder
geometries and external boundary conditions including
presence of debris, proximity to in-core devices and other
thermal hydraulic boundary conditions. For a CANDU 6
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reactor this requires modelling of 12 bundles in each of
the 380 channels along with their feeders and end fittings.
Within each channel all fuel bundles are modelled
individually and each fuel bundle is modelled with 2
nodes for every fuel ring and associated fuel sheaths.
Zircaloy associated with end plates, appendages and fuel
element end caps (14% of the total Zircaloy in a bundle)
is smeared over the fuel sheath. With 16 node radial
model (Figure 7) for each bundle (or part thereof)
thermal response of 380x12x16=54720 volumes is
computed at each time step with consideration of
oxidation, growth of oxide layer, fission product
inventories and deformations as necessary. In addition,
thermal response of all 760 end fittings and 760 feeders is
also computed with 10 subnodes each (Figure 5).

FEEDER

PRESSURE TUBE STUB

END FITTING BODY

LINER TUBE

@ 20g/s steam
—

Each component divided into 10 nodes

Figure 5: End-fitting & feeders modelling in ROSHNI

Figure 6: Bundle model for un-deformed and deformed
bundle geometry.

Bundles are modelled in their deformed state with a ring
model similar to the un-deformed state (Figure 6) Fuel
sheath failures as well as perforations of Pressure and
Calandria tubes under stress are also modelled (Figure 8).
Suspended debris at each of the 4,560 bundle locations
(Figure 9) is tracked on each bundle basis including the
effect of bundle transfer from higher to lower locations.
Terminal debris (Figure 10) behaviour is differentiated
with consideration of water level and melt formation.
Fission product species are tracked based on their risk
importance (Figure 11)
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Figure 8: Oxidation surfaces before and after fuel /
channel failures

Figure 9: Debris behaviour tracking each disassembled
bundle

Figure 10: Terminal debris with water and/or melt.
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Figure 11: Core inventory times dose conversion factors
for inhalation (Blue) and ingestion (red) to examine
relative risks of releases for 23 elements

4. Sample Results
Figures 12 through 15 present sample results for a core

behaviour following a station blackout event without
operator intervention or recovery actions.

Channel D-12 response in the early stages of a SBO scenario
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Figure 12: Thermal transients for 12 bundles of a
typical channel
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Figure 13 : Time taken to boiloff water in each feeder
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Figure 14: time taken to boiloff water within each channel
and begin dry heatup
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Figure 15: Core heatup and disassembly summary for
whole core
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5. Conclusions

A new integrated computer code to model reactor behaviour to a
severe core damage accident has been developed and is being
tested for single unit CANDU-6 reactor such as one at Wolsong.
Preliminary results are exciting, revealing and interesting and
very different from the currently used codes such as ISAAC and
MAAP-CANDU and adaptations of LWR codes reported in
TECDOC 1727. PHWR severe accidents can now be analyzed
more realistically and in greater detail.
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