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1. Introduction 

 

 For the fuel depletion analysis in the pressurized water 

reactors (PWRs), it is necessary to search the critical boron 

concentration (CBC). In the deterministic reactor analysis 

[1], the CBC search is usually based on a Newton-like 

method as: 
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where l is the CBC search iteration index. The boron 

concentration 
( )lp  is updated by using the last two pairs of 

boron concentrations (
( 1) ( 2) and pl lp  

) and the 

multiplication factors (
( 1) ( 2) and l lk k 

). However, the 

application of this method in the Monte Carlo (MC) 

simulation is problematic due to the uncertainty. As ( )lk  

goes to the unity, the difference between the two recent 

multiplication factors ( k ) can be buried in the uncertainty 

in k’s, which may lead to the inaccurate gradient /p k   

for the CBC update. 

 In Ref. [2], a neutron balance approach for the 

determination of the critical parameters such as the CBC 

and the critical control rod position was proposed. The 

eigenvalue of the neutron balance equation is set as the 

critical parameter, instead of the multiplication factor (keff). 

In the deterministic diffusion and transport calculations [2], 

the neutron balance approach showed faster and more stable 

convergence, compared to a Newton-like algorithm. 

Furthermore, it does not require the evaluation of the 

gradient /p k  , which is a good feature for the MC 

simulation. This approach was applied to the continuous-

energy MC calculation [3]. 

 In this paper, the inline CBC search iteration method 

based on the neutron balance approach is applied to the 

continuous-energy MC simulation with acceleration. To 

accelerate the convergence of both the CBC and the fission 

source distribution (FSD), the p-CMFD feedback is applied 

[4-8], where the p-CMFD equation is constructed 

correspondingly. On a typical PWR problem, the 

performance of the inline CBC search algorithm is tested. 

Furthermore, it is also shown that the p-CMFD feedback 

effectively accelerates the convergence of both the CBC 

and the FSDs. 

 

2. Methodology 

 

 In a typical PWRs, the boric acid (H3BO3) is dissolved 

in the coolant (H2O). It is assumed that the boron 

concentration p is uniform over the entire coolant. Then, p 

in unit of [ppm] can be expressed as: 
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where z is the index of local coolant cell to consider the 

thermal-hydraulics feedback and Z is the total number of 

local coolant cells. In Eq. (2), 
2,z H O  is the water density 

[g/cc] of the borated water in the local coolant cell z, 

3 3,z H BO  is the boric acid density [g/cc] of the borated water 

in the local coolant cell z, and 
3 3/B H BOw  is the weight 

fraction of boron in the boric acid.  

 Then, 
3 3,z H BO  can be expressed in terms of p and 

2,z H O , as follows: 
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where p will be iteratively updated to be the CBC (see 

Section 2.1) and 
2,z H O  will be determined by the thermal-

hydraulics calculations.  

 

2.1. Inline CBC Search Iteration Method 

 

 The neutron transport equation can be written in the 

kernel form with the CBC search iteration index l as: 
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where the kernels are defined as: 
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with scattering multiplicity ,m  
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and the multiplication factor can be evaluated as: 
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where dr dE d     for the convenient notation 

of multiple integrations and ( )l

leakJ  is the total leakage of 

neutrons at the space domain boundary. 

 By iteratively solving Eq. (4), the multiplication factor 

converges to unity, while the boron concentration 

converges to the CBC. In this framework, the role of the 

eigenvalue is taken by the CBC, ( 1)lp  , which is hidden in 

the macroscopic cross sections ( 1) ( , )l

t r E  and 

( 1) ( , , )l

s r E E      . 

 To derive an equation to update the CBC, the neutron 

balance equation can be obtained by integrating Eq. (4) over 

the space, energy, and angle, as: 
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where 
( 1) ( )

10

l l

BR 

  is the total removal reaction rate by 

B-10 and 
( 1) ( )l l

othersR 
 is the total removal reaction rate by 

other nuclides, which are defined, respectively, as: 

 
( 1) ( )

10

( 1) ( )

, 10 , 10

1

( , ) ( , , )  ,
z

l l

B

Z
l l

z B a B
r V

z

R

N r E r E



 







 







 (11) 

with  ,
z z

r V r V
dr dE d

 
     

 
( 1) ( )

( 1) ( )

,

10

( 1)

( )

,

( ) ( , ) ( , , )

 ( )

( , , ) ( , , )  .

l l

others

l l

nuclide t nuclide

nuclide B

l

nuclide

l

s nuclide

R

N r r E r E

dE d N r

m r E E r E



 

 





 







   

      



 

 (12) 

 

 The followings are notations used in Eqs. (11) and (12). 

Vz is the volume of the local coolant cell z, AN  is the 

Avogadro constant, 10/B Bf   is the atomic fraction of B-10 

in boron, 
3 3H BOM  is the molecular mass of the boric acid 

[g/mole], and ( 1)

, 10

l

z BN 


 is the atomic number density of B-10 

in the local coolant cell z, which can be expressed as: 
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 In Eq. (13), ( 1)lp   is initially guessed and iteratively 

updated as: 
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where ( )lr  is updated based on Eq. (10), as: 
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with 
( )

10

l

BR   being defined as: 
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 Then, the nuclide number densities of H, B-10, B-11, 

and O in the local coolant cell z can be updated, respectively, 

as:  
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where 
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 For both inactive and active cycles, the CBC and the 

nuclide number densities are updated at each MC cycle as 

Eqs. (14) to (22). At the end of active cycles, the average 

CBC and its standard deviation can be estimated. Of course, 

the multiplication factor is still available to check the 

criticality. 

 For a near critical system with zero boron concentration, 

Eq. (15) can occasionally give a negative CBC due to the 

uncertainty. In this case, the boron concentration is forced 

to be zero to prevent the negative probability problem, 
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which may introduce a bias in the CBC search iteration. To 

avoid such a bias, we may need to consider an extended 

particle-tracking algorithm to treat the negative number 

density problem. 

 

2.2. p-CMFD Feedback in Inline CBC Search Iteration 

 

 In this section, the p-CMFD feedback for the 

acceleration of the convergence in the inline CBC search 

iteration will be presented. The detailed description of the 

p-CMFD feedback for the MC simulation (MC/p-CMFD) 

itself is given in Refs. [7] and [8]. The space domain is 

divided into I coarse-mesh cells. After the MC simulation 

for iteration l, the p-CMFD equation is constructed as: 
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where the same notations are used as in Ref. [8], except for  
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 Equation (23) can be solved by the power method. The 

resulting p-CMFD scalar flux distributions are used to 

adjust the FSDs, while ( )l

pCMFDr  can be used to update the 

CBC as in Eq. (14). 

 

3. Numerical Results 

 

 The inline CBC search iteration method was 

implemented in the in-house 3-D continuous-energy MC 

code, McBOX [9]. The proposed method was tested on a 

typical pressurized water reactor (PWR) problem. 

 Figure 1 shows the configurations of the test problem. 

The material densities and compositions are taken from 

BEAVRS [10]. The ENDF/B-VII.0 continuous-energy 

nuclear data library at 293 K is used in this study. 

 

 
Fig. 1. Configurations of 3-D continuous-energy whole-

core test problem. 

 
 For the inline CBC search iteration, 4,000,000 histories 

per cycle, 300 inactive cycles, and 500 active cycles are 

used, where the initial CBC is set as 0 ppm. To verify the 

inline CBC search iteration, another MC simulation is 

performed with a fixed boron concentration to the average 

CBC obtained from the inline CBC search iteration, which 

means the usual power iteration. 

 The inline CBC search iteration with the p-CMFD 

feedback is also tested, where the p-CMFD calculation is 

performed with the coarse-mesh cell being set as a single 

assembly in x-y plane, with 20 divisions in z-axis. The 

accumulation of the coarse-mesh MC tallies for the p-

CMFD parameters is skipped for the initial 30 cycles. The 

first-in-first-out queue is set as 10 cycles to stabilize the 

fluctuations in the FSDs and reduce the bias from the p-

CMFD feedback. For the source convergence and 

stabilization, 40 inactive cycles are used in the MC/p-

CMFD. 

 Figures 2, 3, and 4 graphically examine the convergence 

of the keff, the CBC, and the Shannon entropy, respectively. 

The quantities from both inline CBC search iterations with 

and without p-CMFD feedback converge to the quantities 

from the fixed CBC calculation, while the p-CMFD 

feedback accelerates the convergence speed significantly, 

especially for the Shannon entropy. 

 

 
Fig. 2. Comparison of keff as cycle proceeds. 
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Fig. 3. Comparison of CBC as cycle proceeds. 

 

 
Fig. 4. Comparison of Shannon entropy as cycle proceeds. 

 

 Table 1 shows the mean and the standard deviation of 

the keff and the p-value in the Jarque-Bera normality test [11]. 

The p-value means the risk to reject the null hypothesis that 

the extracted sample (keff) follows normal distribution, 

while it is true. Table 2 shows the corresponding quantities 

for the CBC. 

 

Table 1. Mean and standard deviation of keff and p-value in 

Jarque-Bera normality test 

 Inline CBC 
Inline CBC 

with p-CMFD 
Fixed CBC 

Mean 0.999997 1.000008 0.999987 

Standard 

Deviation 
0.000016 0.000015 0.000013 

p-value 0.762 0.392 0.881 

 

Table 2. Mean and standard deviation of CBC and p-value 

in Jarque-Bera normality test 
 Inline CBC Inline CBC with p-CMFD 

Mean 1250.347 1250.308 

Standard 

Deviation 
0.063 0.065 

p-value 0.618 0.321 

 

 For all the test cases, the keff’s agree well with unity 

within the 1σ and the p-value is higher than the significance 

level of 0.05 for the Jarque-Bera normality test. 

 

4. Summary and Conclusions 
 

 The inline CBC search iteration with the p-CMFD 

feedback was tested on a typical PWR problem. The p-

CMFD feedback accelerated the convergence of the CBC 

and the Shannon entropy. Since the inline CBC search 

iteration can yield a negative number density for a near 

critical system, an extended particle-tracking algorithm to 

treat the negative number density problem is being studied 

and its results will be presented at the meeting. 
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