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1. Introduction 

 
The stochastic Monte Carlo (MC) method is one of 

many ways to solve the neutron transport equation to 

analyze nuclear reactors. This method makes it possible 

to describe the actual environment precisely in any 

complex geometry and it is considered as the most 

accurate method. However, the computational time 

involved in tracking every single particle and recording 

physical quantities is usually unacceptably long for 

practical reactor analysis. To reduce the computing time 

and statistical uncertainty in the MC calculations, a non-

linear coarse mesh finite difference (CMFD) acceleration 

is popularly utilized in the MC calculation [1-3]. 

The CMFD method including the p-CMFD approach 

assists the MC calculation by quickly updating the 

fission source distribution (FSD). Regarding CMFD-

related studies, most of researches have mainly focused 

on the stochastic MC results assisted by the associated 

CMFD analysis. In the conventional CMFD-coupled MC 

schemes, the deterministic CMFD results are only 

supplementary information for improving and 

accelerating the MC calculation. Taking into account the 

fact that the CMFD analysis itself provides a subset of 

solution to the original MC approach and it takes 

numerical advantages arising from its deterministic 

attributes, in this paper, we have investigated the 

feasibility of a CMFD truncation of the MC solution in 

terms of the solution estimation and variance reduction. 

 

2. Methodologies 

 

In this section, stochastic MC parameters are defined 

to characterize the numerical performance of each 

method. In addition, the basic idea of the CMFD 

truncation of the Monte Carlo solution is introduced. 

.  

2.1 Stochastic MC parameters 

 

In the MC simulation, the accuracy of the calculated 

results is estimated by evaluating stochastic parameters. 

The standard deviation obtained from a single MC 

simulation is usually underestimated due to the inter-

cycle correlation, and it is called apparent standard 

deviation (ASD). Therefore, the real standard deviation 

(RESD) is calculated by considering a number of 

independent MC simulations with different random 

sequences. 

Supposing that the MC calculation is performed with 

N number of batches (i.e., independent simulations), 

there are N  reactor parameters and their associated 

stochastic uncertainties, respectively: 

 1 2 3: , , , , NX x x x x  

 1 2 3: , , , , N      

where i  is the ASD of the 
thi  batch. Then ASD and 

RESD of the quantities in this calculation are obtained as 

follows [1]: 
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2.2 CMFD and p-CMFD truncation of the MC solution 

 

In the conventional CMFD-coupled MC calculations, 

a CMFD or p-CMFD scheme repetitively solves a one-

group neutron diffusion equation in each MC cycle. For 

the supplementary CMFD analysis in the original reactor 

problem, a CMFD node system should be predefined as 

in the standard FDM approximation to the neutron 

diffusion equation. Depending on the node system 

considered, the associated CMFD equation can be 

written in the following standard eigenvalue problem: 
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where M  is the migration operator, F  is the fission 

source operator,   is a one-group neutron flux, and k  is 

the neutron multiplication factor. 

In Eq. (2.1), the system matrices M and F are 

dependent on the one-group cross sections estimated in 

the MC calculation and the CMFD parameters updated 

in each MC cycle. In the CMFD method, correction 

factors are determined such that the reference MC 

neutron current should be preserved at node interfaces. 

The neutron current is expressed in terms of the two 

neighboring node-average fluxes and the associated 

correction factor. 

 In the conventional CMFD, the net current is 

preserved as: 

 1/2 1/2 1 1/2 1ˆ( ) ( )i i i i i i i
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diffusion coefficient., and D̂  is the correction factor 

determined by  
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Meanwhile, in the p-CMFD scheme, both incoming 

and outgoing partial currents are preserved by 

introducing two correction factors on each interface: 
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where D̂  is the correction factor determined by 
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Once the CMFD parameters are generated from the 

MC simulation, the deterministic eigenvalue problem in 

Eq. (3) is solved so as to calculate the eigenvalue 

(multiplication factor) and eigenvector (flux distribution) 

at every cycle. In this work, this CMFD solution is 

proposed as a deterministic truncation of the MC (DTMC) 

solution.  

In Fig. 1, a flow chart for the CMFD-coupled MC 

calculation is described and the basic idea of the DTMC 

method is given again. In the conventional method, the 

deterministic CMFD results are utilized only for 

updating the fission source distribution (FSD) in the 

original stochastic MC analysis, not for the solution itself. 

 

 
Fig. 1 Algorithm for CMFD in MC method 

 

It is worthwhile to note that the deterministic CMFD 

results are also statistical samples capable of predicting 

the solution. The generalized equivalence theory 

confirms that the CMFD solutions should be equivalent 

to the MC ones in view of the eigenvalue and reaction 

rates in each CMFD node. One big advantage of the 

DTMC solution is that it provides both the reactor 

eigenvalue and detailed power profile in each MC cycle 

in the deterministic way and it is very cheap in terms of 

the computational costs.  

The deterministic solution can be essentially 

calculated based on the MC reference parameters. As 

shown in Fig. 1, once the deterministic results are 

obtained, they are used to update the MC FSD in the 

conventional CMFD-coupled MC analysis. It is 

important to note that the DTMC solution can be 

obtained without adjusting the FSD using the CMFD 

solution, which is a one-way coupling for the DTMC 

solution and this approach is evaluated in the current 

paper. It is obvious that the DTMC solution is cycle-wise 

and subject to the stochastic uncertainties. The statistical 

quantities associated with the DTMC estimation are also 

evaluated in the standard way as in the MC calculation. 

 

3. Numerical Results 

 

Numerical tests were carried out to compare the 

performance of the stochastic MC and deterministic 

CMFD results, and assess the feasibility of the CMFD 

truncation method, the DTMC solution, with regard to 

the solution estimation and variance reduction. In this 

numerical tests, the unrodded C5G7 [4] benchmark 

problem was enlarged for a higher dominance ratio, as 

shown in Figs. 2 and 3. In this work, a multi-group in-

house MC code has been used for the MC and CMFD 

calculations. 

 
Fig. 2 Radial core configuration 

 

 
Fig. 3 Axial core configuration 

 

The CMFD node is set to be equivalent to the fuel pin 

size because detailed local information should be 

obtained from the DTMC calculation for practical 

applications. Each simulation for comparison was 

simulated with 100 inactive cycles, 500 active cycles, 
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and 1,000,000 histories per cycle, while the reference 

solution was obtained with 1,000 active cycles. For 

evaluation of the RESD, 30 independent MC runs were 

simulated with different random seeds. In the CMFD 

calculation, ten successive cycles are accumulated for the 

estimation of the CMFD parameters. 

In Table 1 and Figs 4-6, numerical results for the 

eigenvalue are compared in terms of mean value, ASD, 

and RESD for each case: standard MC, and DTMC 

(CMFD/p-CMFD). Note that the standard MC indicates 

stand-alone MC calculation without CMFD coupling in 

the current work. The DTMC means the deterministic 

solutions with CMFD or p-CMFD scheme applied in the 

MC simulation. 

It should be noted that the DTMC multiplication 

factors show a good agreement to the reference within 

the stochastic uncertainties even from the 1st active MC 

cycle. It is important to note that the ASD of the DTMC 

is about 3~4 times lower than that of MC results. The 

RESD of the DTMC solutions are not decreased as low 

as in the ASD case, but it is still quite lower than that of 

MC results throughout the simulation (Figs. 4 and 5). 

This indicates that accurate solution can be obtained by 

the deterministic results with less number of active cycle 

compared to the MC results; thus, the corresponding 

computational cost can be decreased a lot. 

 

Table 1. Comparison of ASD and RESD for keff 

Method Cycle keff 
ASD 

(pcm) 

RESD 

(pcm) 

Reference 1.152157 3.01 - 

Standard 1 1.151972 - 87.8079 

MC 10 1.152215 22.06 39.14 

 500 1.152162 3.84 5.87 

DTMC 1 1.152120 - 27.6861 

(CMFD) 10 1.152144 4.53 17.50 

 500 1.152152 1.01 3.43 

DTMC 1 1.152178 - 20.3433 

(p-CMFD) 10 1.152155 3.60 18.75 

 500 1.152159 0.94 3.03 

 

 
Fig. 4 Cumulative ASD of the multiplication factor 

 

 
Fig. 5 Cumulative RESD of keff 

 

As shown in Figs. 6.1 and 6.2, the DTMC eigenvalues 

are well within the acceptance range (1σ) of the reference 

solution even from the very initial cycle. It certainly 

demonstrates that the DTMC solution truncated at the 

early stage of the MC simulation could have a high 

accuracy and reliability to precisely estimate the DTMC 

solution. 

 

 
Fig. 6.1 Cumulative keff (MC) with the reference 

 

 
Fig. 6.2 Cumulative keff (DTMC) with the reference 
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Next, the pin-level power distribution was compared 

for each method. The pin-wise detailed stochastic error 

distributions are illustrated in Fig. 7, and the maximum 

and average values of both ASD and RESD are provided 

in Table 2. Similarly to the multiplication factor results, 

the ASD and RESD of the DTMC are smaller than or 

similar to those of the MC results. 

In Figs. 8.1 and 8.2, a relative pin power at the specific 

position is compared to the 68% acceptance range of the 

reference solution. The specific pin is randomly chosen 

to be five pins to the right and five pins up from the center. 

The DTMC solutions quickly converge to the reference 

solution. 

 

Table 2. Comparison of pin power profile 

 

 
Fig. 7 Distribution of ASD and RESD for each case 

 

 

Fig. 8.1 Relative pin power (MC) at UO2 pin in UO2 

fuel assembly; (x,y)=(5,5) 

 
Fig. 8.2 Relative pin power (CMFD) at UO2 pin in 

UO2 fuel assembly; (x,y)=(5,5) 

 

3. Conclusions 

 

The feasibility of a deterministic truncation to the MC 

solution (DTMC) has been proposed and evaluated in 

terms of the solution estimation and variance reduction. 

Since the DTMC method is based on the MC simulation, 

it solves the reactor system problem without any 

approximations. We have demonstrated that the DTMC 

solution quickly approaches to very accurate solution in 

the 3D pin-wise eigenvalue problem. It is found that both 

ASD and RESD for the DTMC solutions are much 

smaller for the reactor eigenvalue and they are rather 

comparable or smaller for the detailed pin-power profile. 

We also found that the DTMC approximation is very 

accurate even for the very first active cycle of the MC 

analysis. This implies that computing cost can be saved 

dramatically by using the DTMC solution for standard 

reactor problems and it deserves a lot more studies. 
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Method Cycle 
Avg. 

ASD 
Max. 

ASD 
Avg. 

RESD 
Max. 

RESD 

Standard 1 - - 0.176 0.503 

MC 10 0.071 0.156 0.077 0.216 

 500 0.011 0.023 0.012 0.036 

DTMC 1 - - 0.079 0.221 

(CMFD) 10 0.015 0.039 0.065 0.183 

 500 0.004 0.009 0.012 0.035 

DTMC 1 - - 0.078 0.244 

(p-CMFD) 10 0.014 0.038 0.064 0.180 

 500 0.004 0.008 0.011 0.033 


