
Performance Evaluation of Moving Mesh Method with Higher-Order Numerical 

Scheme Applied to 1D Thermal-Hydraulic System Analysis Code

Introduction

▣ The existing nuclear system analysis codes such as RELAP5, COBRA-TF, TRAC, MARS and SPACE

use the first-order numerical scheme in both space and time discretization.

▣ The 1st order numerical scheme is very robust and stable. But it is highly diffusive and less accurate.

These characteristics are critical drawback in modeling the dramatically fluctuated situation like LOCA

(Loss Of Coolant Accident).

▣ First, the 1st order numerical scheme on the fixed grid can occur excessive numerical diffusion problem

in simulation of accident condition due to the dramatic fluctuation. So, the prediction is less accurate and

conservative than reality.

▣ Second is very strict global requirement on the time step for the dramatic fluctuation. The time step

should be extremely small in order to reduce the error near the regions where the gradients should be high

during the analysis. This results in inefficient computational cost. And even the code is dead.
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Conclusions

Numerical Results

▣Accuracy

▲Sensitivity test results of the 1st 

order and 2nd order upwind scheme 

on the fixed mesh and moving mesh

Numerical Test Problem

▣ A single phase pipe flow with a sine pulse of temperature is modeled by MARS and the TWICE codes

with several higher-order numerical schemes separately and the results are compared to each other.

▣ The initial temperature and pressure of the fluid is 300K and 101,325Pa, respectively. The temperature of

the injected fluid is changed with time as shown in Fig. 3.

▣ This study evaluated the performance of the moving mesh method with the higher-order numerical schemes

for the next generation nuclear system analysis code.

▣ The accuracy is slightly improved in the moving mesh than the fixed mesh since the mesh points move

depending on the propagation of the temperature pulse along time. However, the convergence rate for the error

becomes lower on the moving mesh.

▣ The number of the iteration for determining the movement of the meshes is small. So, the calculation time

on the moving mesh is not much different with the fixed mesh. Also, there is no difference between the higher-

order numerical schemes on the calculation time.

▣ Since the time step control on the fixed mesh is not carried out, the moving mesh method applied to the

nuclear system analysis code has the possibility of improvement for the calculation efficiency.

▣ For further works, the performance of the moving mesh algorithm depends on the temporal smoothing factor

τ, which determines the concentration of the meshes. So, depending on this factor, the accuracy and the

computational efficiency will be evaluated.

▣ In case of the wall heat transfer, the coupling between the hydrodynamic mesh and the heat structure mesh

should be considered. If the hydrodynamic meshes move axially along the pipe in one dimension, the movement

of the heat structure meshes should be considered in two dimensions. So, the coupling between the

hydrodynamic mesh and the heat structure mesh will be studied.

▲ Configuration of single phase pipe flow with 

sine pulse of temperature
▲ Temperature profile of fluid injected 

at pipe inlet
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TWICE code with Moving Mesh Method

▣ A single phase transient analysis code which is possible to calculate in the first-order and the higher-

order scheme but mimics MARS solver is built in MATLAB environment. This code is called TWICE

code (Transient Water system analysis code with ICE method). In this code, the moving mesh method is

applied to compare the performance of the moving mesh method and the higher-order numerical schemes.

▲Sensitivity test results of Lax-

Wendroff (LW) and centered 

differencing (CD) scheme on the 

fixed mesh and moving mesh

▲Estimated error and convergence rate for error

▲Calculation time of each numerical schemes 

on the fixed mesh and moving mesh

▣ Computational Efficiency

▣ This simulation is performed for several numbers of meshes to evaluate the accuracy improvement and 

compare the computational efficiency of the moving mesh grid compared to the fixed grid. A sensitivity test 

for several combinations of spatial and temporal higher-order schemes is conducted.

▣ Moving mesh method
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Numerical scheme for the spatial

1st order upwind scheme 𝜙=0
2nd order upwind scheme 𝜙=3, 𝜈=0

Lax-Wendroff scheme 𝜙=1
Centered differencing scheme 𝜙=1, 𝜈=0

▣ Moving mesh PDE

To determine the movement of mesh points, the 

moving mesh PDE approach by Huang et al. [1] is 

used. 
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where M is the monitor function, τ is temporal 

smoothing parameter. 

A commonly used form of the monitor function is 

the arclength monitor function [1]. 
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To smooth the mesh, a regularized version ෩𝑀 is 

used.
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where 𝛾 and 𝑖𝑝 are the spatial smooth factors. 𝛾 =

2 and 𝑖𝑝 = 4 are recommended in [1]. 
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where 𝐸𝑖 is a centered approximation to the term 

on the right hand side of eq. (6) given by 
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▲Algorithm of TWICE code with the moving mesh method
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▲Estimated error for each 

numerical schemes along the mesh 
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▲Calculation time of each numerical schemes on the fixed 

mesh and moving mesh (τ=0.1)

Mesh
Number.

Fixed_1T1S
_Upwind

Fixed_1T2S
_Upwind

Fixed_1T2S
_LW

Fixed_1T2S
_CD

20 162.7 160.8 158.7 158.4
40 286.0 278.8 274.5 275.9
80 520.7 514.1 506.5 505.4

Mesh
Number.

Moving_1T
1S_Upwind

Moving_1T
2S_Upwind

Moving_1T
2S_LW

Moving_1T
2S_CD

20 169.5 170.3 174.1 176.1
40 297.0 298.1 303.5 309.8
80 546.5 532.9 568.7 573.9

▲Number of iteration in the moving mesh algorithm for each numerical schemes (τ=0.1)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

T
im

e
 (

s
e

c
)

X (m)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

T
im

e
 (

s
e
c
)

X (m)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

T
im

e
 (

s
e
c
)

X (m)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

T
im

e
 (

s
e

c
)

X (m)

▲Mesh movement along the time for each numerical schemes
(a) 1T1S upwind (b) 1T2S upwind (c) 1T2S Lax-Wendroff (d) 1T2S centered differencing
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04

8.29E-

04

8.68E-

04

Conver

gence

rate

0.7842 0.79786 1.7624 1.70793 1.70133 1.71946 1.74516 1.70429 1.08642 1.61724 1.61349 1.57668

(a) 1T1S upwind (b) 1T2S upwind (c) 1T2S Lax-Wendroff (d) 1T2S centered differencing


