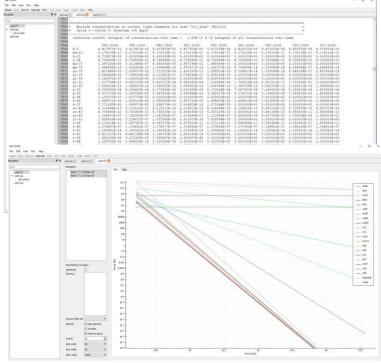
Effect of Concrete Mixture Design On Radiation in Biological Shielding Wall of APR1400

Korean Nuclear Society Conference, Gyeongju. October 25-27, 2017.

Samson Ayodeji Olubiyi , S.-C. Lee , C.J. Hah KEPCO International Nuclear Graduate School (KINGS) Korea

Overview

1. Background and objective
2. Concrete mix analysis and breakdown
3. Neutron flux calculation and distribution
4. Concrete Irradiation analysis
5.Conclusion



Background

- ➤ The evaluation of activation products produced in reactor shielding concrete will:
 - Give a profound knowledge on the method of decommissioning procedure to be followed
 - Guide utility companies in estimating the amount of radiation dose effect on workers and the general public during decommissioning process
 - Assist in determining decontamination methods and,
 - Also assist in the selection of waste disposal methods during transportation and storage
- ➤ ORIGEN (Oak Ridge Isotope Generation code) will be used in the simulation process

Objective

- ➤ To analyse concrete composition mix and types used in NPP concrete construction for shielding purpose
- To carry out a detailed irradiation decay process on the concrete mix types to determine the various activation products (significant) produced after NPP's active life
- To classify each activation product in order of significance with respect to their half life
- To determine whether a particular concrete mix type could be classified as a radioactive waste or otherwise as well its level of radioactive waste

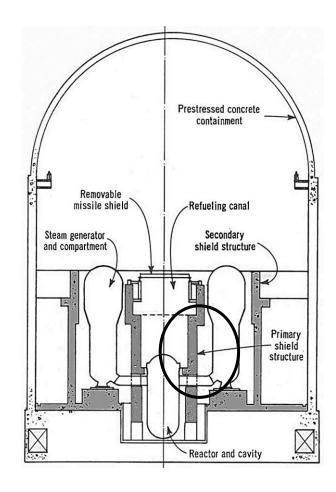


Fig. 1. APR1400 vertical sectional view

Concrete mix analysis and breakdown

- ➤ Concrete incorporating three different cement types`:
- > Ordinary Portland cement (OPC), Fly ash cement and Slag
- Concrete mixture 1: 100% OPC
- ➤ Concrete mixture 2: 80% OPC + 20% Fly ash
- ➤ Concrete mixture 3: 60% OPC + 40% slag

Table I: Concrete mixture design

Concrete Mix	Water	Cement	Slag	FA	Crushed sand (1-1/2 &3/4)	Sand	Total(g/cm3)
MIX 1	0.16	0.402	-	-	1.043	0.684	2.289
MIX 2	0.16	0.32	-	0.082	1.043	0.684	2.289
MIX 3	0.16	0.241	0.161	-	1.043	0.684	2.289

Concrete mix analysis and breakdown

- Table II shows the chemical composition of each cementitious material in the mix.
- The compositions given in Tables I and II was analyzed carefully to determine the percentage and mass compositions of each element in the mix
- This was then used as input in the simulation for radiation analysis.

Table II: Chemical Properties of FA and Slag (%)

Chemical composition	FA	Slag
Specific gravity	2.43	2.79
SiO ₂	63.5	34.4
Al_2O_3	11.1	9.0
Fe ₂ O ₃	5.2	2.58
CaO	14.7	44.8
MgO	1.98	4.43
SO_3	0.35	2.26
Na ₂ O	0.48	0.62
K ₂ O	0.4	0.5
LOI	2.1	1.32

Neutron Flux calculation and distribution

Table III: Neutron fluence and flux value for APR1400 RPV

Radius (cm) (peak values)	Fluence(<i>n/cm</i> ²) (E>1 MeV, 55.8 EFPY)	Flux (n/cm²s)
231.775 @ inside surface	9.5×10^{19}	5.40 x 10 ¹⁰
237.528 @ ¼ thickness location	5.1×10^{19}	2.90 x 10 ¹⁰
249.034 ¾ thickness location	1.0×10^{19}	5.68 x 10 ⁹

- The neutron fluence for the APR1400 Reactor Pressure Vessel was referenced from APR 1400-Z-A-NR-14015-NP, Rev.0 jointly published by KEPCO-KHNP using the DORT code and BUGLE cross section library
- The values represents the peak values of the fast neutron flux (E > 1 MeV) over 60 years of operation
- \triangleright Regression analysis was carried out to evaluate the removal cross section, Σ_t , of the RPV material with regards to the attenuation equation :

$$\varphi_1 = \varphi_0 e^{-\Sigma_t x} \tag{1}$$

Ref: APR 1400-Z-A-NR-14015-NP, Rev.0

Neutron Flux calculation and distribution

Table IV and Fig. 3 shows the flux values evaluated from the regression model which is used to evaluate flux at the outer surface of the RPV.

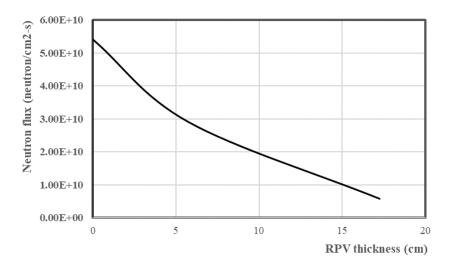
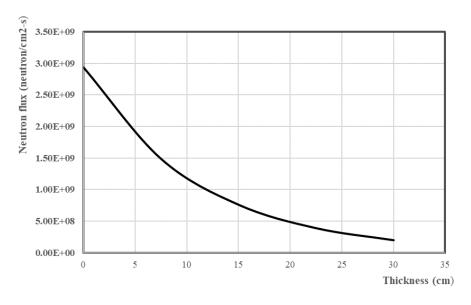


Fig. 3. Neutron attenuation in RPV

Table IV: Regression analysis of flux for APR1400

Radius (cm)	Flux (Regression)	Flux(reference)
231.775 Inside surface	6.00E+10	5.4E+10
237.528 ¼ thickness location	2.82E+10	2.9E+10
249.034 ¾ thickness location	6.30E+9	5.68E+9
Outside surface	2.94E+9	-



Neutron Flux calculation and distribution

- ➤ The distribution of flux levels along the depth in the bio-shielding concrete wall was evaluated with consideration of the removal cross section for concrete
- Table V and Fig. 4 shows the distribution of the flux along the depth in bio-shielding concrete wall.

Table V: Flux distribution in concrete

Concrete depth (cm)	Flux level
0.000	2.94E+09
7.505	1.49E+09
15.01	7.62E+08
22.515	3.91E+08
30.02	2.00E+08

Fig, 4. Neutron distribution in concrete

Concrete Irradiation Analysis

To simulate concrete irradiation in the bio-shielding wall:

- it was assumed that APR1400 was operated for 60 years, 18months cycle length and a cooling down time of 10years
- The suitable cross section library in the ORIGEN code is the ce16x16 library, using fuel with an average enrichment of 3.5 w/o.
- ➤ It was also assumed that the reactor operates at 100% power over each cycle and,
- ➤ With no power reductions, no reactor trips, or unexpected outages
- The waste level was evaluated with the following equation: $\sum c^i/c_l < 1$ (2) where: ci = radioactivity concentration of nuclide i and cl = concentration of radionuclides not emitting α rays

Concrete Irradiation Analysis

- ➤ Using ORIGEN computer code, the irradiation decay for the concrete was calculated
- The calculation was performed with the calculated neutron fluxes along the concrete thickness
- ➤ The radioactivity of the most significant radionuclides are presented
- ➤ The activity change of the nuclides over cooling time of ten years is presented

Table VI: Significant nuclides with half life after 10 years cooling time

Isotope	half life(years)	isotope	Half life (hours)
h-3	12.3	na-22	15
be-10	1.39E+06	k-42	12.4
c-14	5700	sc-44	3.97
al-26	7.17E+06	sc-45m	318ms
si-32	150	co-60m	10.4mins
cl-36	3.08E+05		
ar-37	35.04	Isotope	Half life (days)
ar-39	2.69E+02	p-32	14.3
ar-42	32.9	p-33	25.3
k-40	1.25E+09	s-35	87.4
ca-41	1.03E+05	ca-45	162.7
ca-48	4.90E+19	sc-46	83.8
mn-53	3.70E+06	cr-51	27.7
fe-55	2.74E+00	mn-54	312
co-60	5.27E+00	fe-59	44.495

Activity (Ci)

Concrete Irradiation Analysis

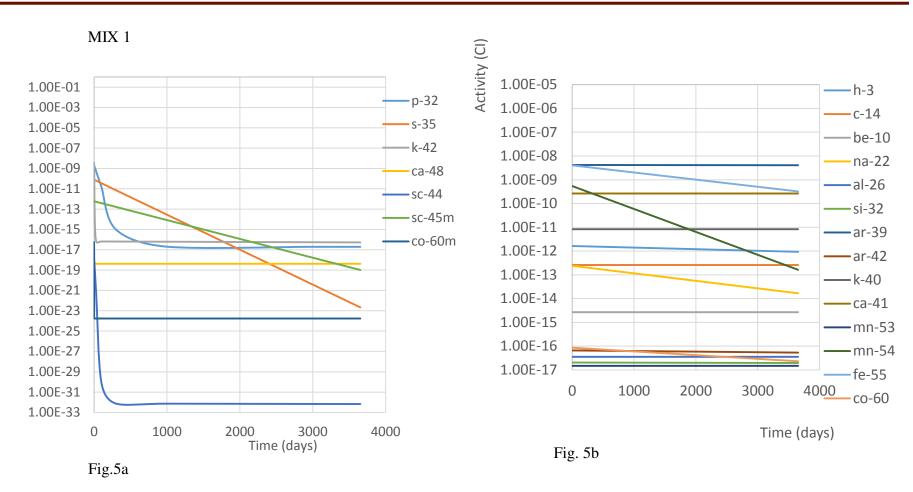


Fig. 5a and b: Activity change with time for Long and short lived nuclides

Concrete Irradiation Analysis

- ➤ For the three concrete mixture design, the waste level analysis results are presented in Table VII and Fig. 8 along distribution of flux level.
- ➤ At surface and back end of concrete, the concentration ratio for each type is < 1 from (2). This indicates that at this point, the structure is considered a waste

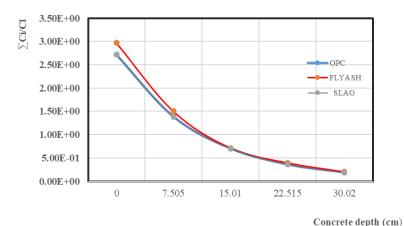


Fig. 8. Concentration ratio against concrete thickness

Table VII: Concentration ratio for mix types

Thickness	OPC	FLYASH	SLAG		
Front end Surface	2.720	2.970	2.720		
1/4 thickness location	1.380	1.500	1.380		
2/4 thickness location	0.706	0.713	0.702		
3/4 thickness location	0.361	0.394	0.361		
Backend location	0.185	0.201	0.185		

Also, Slag and OPC showed a bit lower concentration ratio accordingly, specifically with a relatively higher flux compared to FA mix.

Conclusion

- ➤ The activation product obtained after a 60 years operation and 10 years cooling of the concrete used in biological shield especially for APR1400 was considered in this project
- ➤ The study considered three major concrete mix types incorporating three different types of cementitious material: OPC, FA, and SLAG
- ➤ Irradiation was carried out with the ORIGEN code using ce16x16 library, 3.5w% fuel enrichment. The operation and cooling history assumed to be 100% with no reactor trip or sudden shutdown
- ➤ The result was used in the evaluation of the level of degradation along concrete thickness for the mix types considered
- ➤ The result showed that the concrete mixture design with FA showed higher concentration in comparison with OPC and SLAG
- ➤ Through further study, the results in this paper can be useful for decision on how much of concrete should be decontaminated during decommissioning.

