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1. Introduction 

 
Ever since nonlinear coarse mesh finite difference 

(CMFD) method had been introduced by K. Smith in 

1983 [1], the method has been successfully 

implemented for accelerating the process of solving 

both neutron diffusion and transport equations. 

However, stability issues on the method were observed 

in some practical applications. In order to understand 

these phenomena, Fourier analysis was applied for 

CMFD and its modified versions [2].  

One of those variants, one-node CMFD, proposed by 

Shin, et. al. in 1999 [3], handles local fine mesh analysis 

individually, therefore, suitable for parallel computing 

environments. In this paper, convergence of CMFD with 

one-node kernel is investigated with both analytic and 

numerical approach, and compare that of two-node 

kernel CMFD. Also, we suggest application of partial 

current based CMFD acceleration (p-CMFD) in one-

node basis as a way of convergence enhancement for 

both sequential and parallel computing environments.  

 

2. Discrete One-node CMFD 

 

The following one dimensional reactor model is 

divided into coarse meshes indexed as i , and they are 

subdivided into p  number of equally sized fine meshes.  

 
Fig. 1. One dimensional coarse/fine mesh divisions. 

 

For the right side boundary of 
thi coarse mesh, 

currents at  infinitesimal distance from the boundary 
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Equating Eq. (1) and (2) in order to meet neutron 

current continuity will give: 
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Also from (1) and (2),  
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and the correction factors are updated from local fine 

mesh calculation.  

 

2.1 Coarse mesh equations 

 

Continuity equation for 
thi coarse mesh: 
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Here, surface net current is approximated as: 
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    ,n nw  discrete ordinate quadrature set.  

 

2.2 Fine mesh equations 

 

In the slab geometry, neutron transport equation in 

fine mesh is expressed as follows:  
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Discretizing the transport equation with diamond-

differencing and quadrature set will give:  
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3. Fourier Analysis of One-node CMFD 

 

In this paper, analytic approach is made with uniform 

mesh size, constant properties, and flat source reactor 

with all-reflective boundaries. For the given condition, 

scalar flux is 
rQ  . 

   Now, we introduce input for initial iteration step:  
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to both coarse and fine mesh equations. Then choose 

( )O   terms only to linearize for error  , while (1)O  

shows trivial result.  

 

   From local fine mesh equations, we get: 
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After some algebra, global coarse mesh equation (7) 

and (8) will be: 
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Applying Eq. (15) to Eq. (16) and using 1 3 tD   

give the final form of linearized iteration: 
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And from flux modulation,  
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For the case of uniform mesh and infinite medium, 

choice of the following Fourier ansatz is appropriate: 
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Introducing Eq. (19) to Eqs. (17) and (18) and 

solving the resulted eigenvalue problem numerically 

lead us to plot the following spectral radius curves for 

different scattering ratios.  

 
Fig. 2. Spectral radius of one-node CMFD for 4.p   

 

Notice that from Eq. (17), linearized form of one-

node CMFD is exactly same with that of CMFD with 

two-node kernel [4], as a result, the same conditional 

instability is observed for near-unity scattering ratio 

problems.  

In Fig. 2, the instability begins to develop when the 

optical thickness is slightly above 1 and the scattering 

ratio is rather high, and it mainly broadens to larger 

optical thickness region with increasing scattering ratio. 

Since a larger scattering ratio results in a lower 

absorption, effects of neutrons from adjacent nodes will 

be more significant, and therefore more iterations are 

needed for convergence. 
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4. Application of p-CMFD in One-node Basis 

 

Partial current-based coarse mesh finite difference (p-

CMFD) acceleration is developed specifically to solve 

the divergence issues of CMFD for the cases with large 

optical thickness. This method preserves two partial 

currents at each interface with two correction factors:  
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On the other hand, one-node CMFD also produce 

outgoing partial currents from incoming partial currents, 

so 
1/2

ˆ
iD


can be updated in the same manner as it’s done 

in two-node kernel p-CMFD acceleration. From this, 

CMFD and p-CMFD with one-node kernel will be 

compared in the following numerical studies, both for 

sequential and parallel computation algorithms.  

 

5. Numerical Tests 

 

In this chapter, one-node CMFD and p-CMFD were 

tested for 1-D slab homogeneous reactor with vacuum 

boundary condition on each side, both for sequential 

and parallel calculation. The problem size is 1000 cm , 
11 cm  , and flat fixed source of 31.0 # sec.Q cm  

The convergences are measured in terms of numerical 

spectral radius defined as, 
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and plotted with corresponding optical thickness. The 

S16 Gauss-Legendre quadrature set was used in the 

following evaluations.  

 

5.1 Sequential calculations 

 

Sequential calculation of CMFD and p-CMFD in 

one-node basis show similar behavior with that of 

Fourier analysis results. Since Fourier analysis doesn’t 

consider boundary condition updates and kernel-wise 

analysis, it is equivalent to sequential calculation 

process.  

From scattering ratio of 0.9, unstable region is 

expected from Fourier analysis, and observed from 

numerical result as well for the case of CMFD with one-

node kernel. However, acceleration of p-CMFD 

formulation solves the instability issue as Fourier 

analysis result shows.  

 
Fig. 3. Sequential calculation of 1N-CMFD and  

1N-pCMFD and comparison with Fourier analysis for the  

case of 0.8c  . 

 
Fig. 4. Sequential calculation of 1N-CMFD and  

1N-pCMFD and comparison with Fourier analysis for the  

case of 0.9c  . 

 

5.2 Parallel calculations 

 

For parallel calculation, there are several options 

regarding each local problem’s boundary conditions:  

 

ⅰ) we can use previous local angular flux,  
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Alternative update options would include flux scaling 

and P1-like distribution shape assumption. However, 

boundary angular flux modulation with partial currents 

ratio was only considered in this paper for brevity.  

Numerical result of parallel calculation algorithm 

with boundary condition update was different from that 

of sequential calculation in terms of convergence speed 

and behavior.  
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Fig. 5. Parallel calculation of 1N-CMFD and  

1N-pCMFD for the case of 0.8c  . 

 

By comparing figure 3 and 5, we can clearly notice 

that parallel calculation algorithms are showing slower 

convergence than sequential case. This is because of 

different boundary condition update strategy of them; 

sequential calculation updates local boundary condition 

for the next coarse mesh after each local analysis, while 

parallel algorithm updates boundary conditions for all 

coarse meshes at the same time, which means 

acceleration from the update is less effective than 

sequential calculation. 

 
Fig. 6. Parallel calculation of 1N-CMFD and  

1N-pCMFD for the case of 0.9c  . 

 

From this one-node parallel calculation results, p-

CMFD shows faster convergence compare to one-node 

CMFD in the entire section which coarse mesh optical 

thickness is larger than one mean free path, while 

potential instability spectral radius hump is observed in 

one-node CMFD. When coarse mesh optical thickness 

is smaller than one mean free path, parallel calculation 

schemes shows decrease of convergence as 

demonstrated by Kelley in his study on spatial domain-

decomposed CMFD in 2012 [5].  

From the numerical results, overall performance 

shows that p-CMFD can be considered as a better 

option than CMFD in one-node based parallel 

calculations, for practical coarse mesh optical thickness 

region. 

   

6. Conclusions 

 

In this paper, we have analyzed convergence behavior 

of both 1-node CMFD and 1-node p-CMFD for both 

sequential and parallel algorithms. For sequential 

calculation, the 1-node CMFD method turns out to be 

equivalent to the conventional 2-node CMFD in view of 

the convergence characteristics. In the case parallel 

implementation, we showed that a better convergence 

can be obtained with the partial current-based 1-node p-

CMFD scheme than the conventional 1-node CMFD 

method preserving both net current and surface flux. 

  

Theoretical analysis for parallel 1-node CMFD 

schemes will be performed for a better understanding of 

the convergence behaviors in the future.  
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