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1. Introduction 
 

Diagnosis of the nuclear power plant (NPP) 
condition is performed under the judgment of operators 
based on the procedures. However, human errors such 
as inappropriate judgment or action during the operation 
may aggravate the safety and integrity of the plant. 
According to the Operational Performance Information 
System (OPIS) database in Korea [1], from 2000 to 
2016, about 17% of events (47 of 274) were caused by 
human error. 

 When anomalies occur in NPPs, the early detection 
is important for safe and economic operations. In 
addition, when an emergency occurs in NPPs, the 
operator should monitor safety functions periodically 
and repeatedly which are critical for plant integrity. In 
those situations, the operator needs to identify possible 
success paths as necessary, and try to stabilize or safely 
shutdown the plant using emergency operating 
procedures (EOPs) [2]. In case of abnormal or emergent 
situation, aside from progressing procedures, other 
things (e.g., multiple faults, numerous alarms, 
conflicting data and missing or incomplete information) 
may bother operators [3].  

If an autonomous monitoring and diagnosis algorithm 
which consider main safety variables is applied to 
support the operators, it is possible that the proportion 
of human error can be decreased significantly. 
Furthermore, the results of monitoring will also be 
helpful to cope with abnormal or emergent situation 
with high credibility. 

This study attempts to develop an algorithm for 
monitoring the status of safety parameters in NPP. 
Critical safety functions (CSFs) which are important to 
prevent core damage are considered for selection of 
safety parameters. Then, this study suggests a rule-based 
algorithm for monitoring safety parameters. 
 

2. Selection of major safety parameters 
 

To develop an algorithm for monitoring safety 
parameters, operating parameters are chosen based on 
the CSFs considered in three-loop Westinghouse type 
pressurized water reactor (PWR). Figure 1 shows the 
hierarchy of safety functions in Westinghouse type 
PWR. The six CSFs (i.e., subcriticality, core cooling, 
heat sink, RCS integrity, containment integrity and RCS 
inventory) based on the potential threat to the three 
barriers (i.e., fuel cladding, primary coolant system 
boundary, Reactor Building) are considered. Because 
each of them has hierarchical structure which comprises 
system variables affecting the plant safety, CSFs allow 
the operator to respond to these threats prior to event 
diagnosis [5]. 

This study uses the Compact Nuclear Simulator 
(CNS) as a testbed. The plant model in CNS is three-
loop Westinghouse PWR. On the basis of six CSFs, 32 
parameters in CNS are selected. The parameters related 
with CSFs are described in Figure 1. For example, to 
assess the RCS integrity, RCS pressure and Cold-leg 
temperature by each loop need to be monitored. 
 
 

 

 
Fig. 1.  The hierarchy of safety functions in Westinghouse PWR
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3. Rule-based expert system for monitoring CSFs 
 
To develop a monitoring algorithm for CSFs, a rule-

based expert system which uses rules as the knowledge 
that mimic the reasoning of human expert encoded in to 
the system is applied. It is the simplest form of artificial 
intelligence. It provides a way to code expert knowledge 
of narrow areas into an automated systems. Simply, 
rule-based systems can be created by using assertion 
sets and a set of rules that specify how assertions work 
such as a set of if-then statements (i.e., IF-THEN rules). 
[4]. 

The rule-based expert system is implemented with 
Python 3.5.3 on the basis of CSF tree procedures 
applied in three-loop Westinghouse type PWR. Figure 2 
shows an example of CSF tree for subcriticality. The 
determination of subcriticality is based on values of 
power range and intermediate range detector, start-up 
rate of intermediate and source range. As a result of 
determination, the status of CSF is classified into 4 
levels. Level 1 states the normal condition of CSF and 
level 2 indicates the abnormal condition of CSF. Levels 
3 and 4 indicate significant and extreme threats of CSF, 
respectively. An example algorithm is shown in figure 3. 
 

4. Result 

 
This study implements six CSFs monitoring 

algorithm with the rule-based expert system. For 
demonstration, CNS data for the loss of coolant accident 
(LOCA) scenario with the size of 200 square 
centimeters were used. In addition, the malfunction 
injection time to the CNS simulator is 30 seconds. The 
end of simulation time is 2532 seconds. There was no 
control or additional interventions. Figures 3 to 8 show 
the CSFs monitoring results. Y-axis represents the 
levels of CSFs. The results indicate that each CSF can 
be monitored well by the developed algorithm. In 
addition, the feasibility of the algorithm for seven events, 
including steam generator tube rupture (SGTR), LOCA 
with SI valve fail, and main steam line break, has been 
tested. 
 

5. Conclusion 
 

The aim of this study is to develop an algorithm for 
monitoring the CSFs in NPP for unloading operator’s 
task in abnormal or emergent situation for safety. It is 
expected that this approach can be applied to not only 
diagnosis of NPP states but also the performance 
monitoring. 
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Fig. 2. An example of CSF tree for subcriticality
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Fig. 3. An example algorithm for Subcriticality on Python 
 

 
Fig. 4. The subcriticality status by time (LOCA) 

 
Fig. 5. The core cooling status by time (LOCA) 

 

 
Fig. 6. The heat sink status by time (LOCA) 

 

 
Fig. 7. The RCS integrity status by time (LOCA) 

 

 
Fig. 8. The containment integrity status by time (LOCA) 
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Fig. 9. The RCS inventory status by time (LOCA) 
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