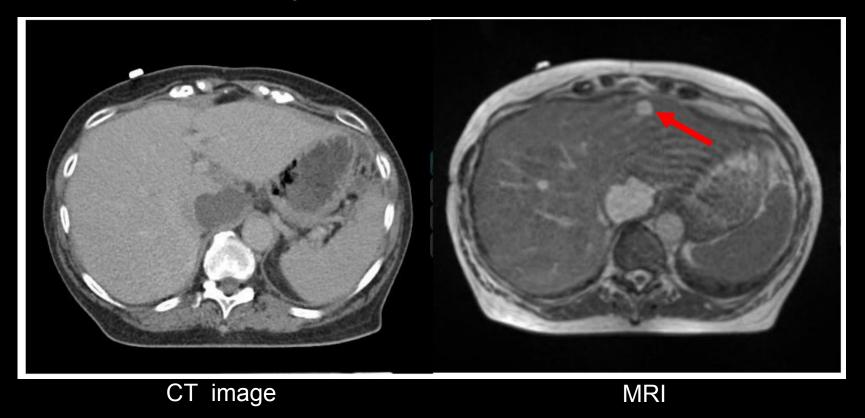

2017 KNS 춘계학술발표회 방사선이용 및 방호 분과

Benchmark of MCNP6 for ionization chamber simulation in the presence of a magnetic field using the Fano cavity theory: Dose comparison with EGSnrc, PENELOPE, and Geant4

서울대학교 방사선의학물리연구실 이재기

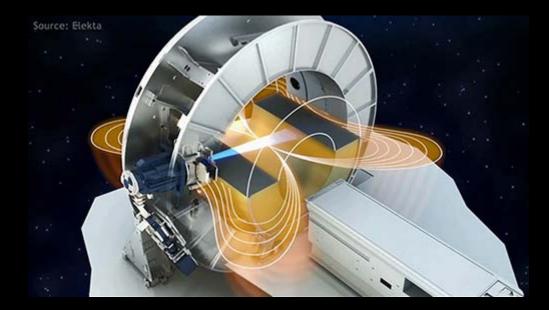

Introduction

Advantages of MRI

- High soft tissue contrast
- No radiation exposure

CT VS. MRI

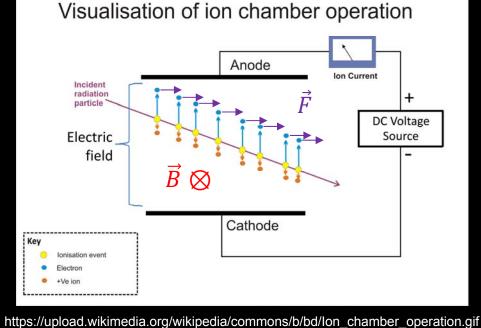
Target visualization (liver lesions)



DOI: 10.15761/ICST.1000181

RADIATION IN B-FIELDS

- MR-linac
 - High-quality & real-time images during radiotherapy



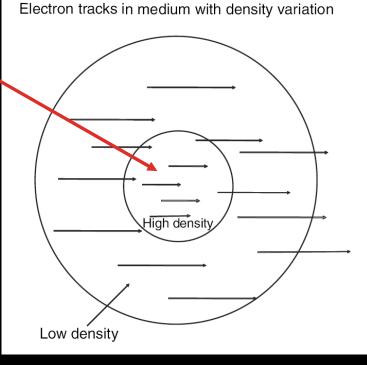
https://www.philips.co.uk/healthcare/education-resources/publications/hotspot/mr-linac

DOSIMETRY IN B-FIELDS

- The magnetic fields influence the trajectories of the secondary electrons by the Lorentz force.
- Dose distribution in water and dose response of ionization chambers are changed.

MONTE CARLO SIMULATION

- High accuracy without B-fields
- Sophisticated algorithm
 - Condensed history & multiple scattering
 - To maximize step size maintaining accuracy (for speed-up)
- B-field simulation
 - MCNP6.1, EGSnrc, PENELOPE, and Geant4
- We need to validate the accuracy of the Monte Carlo codes in the presence of B-fields.


FANO CAVITY THEOREM

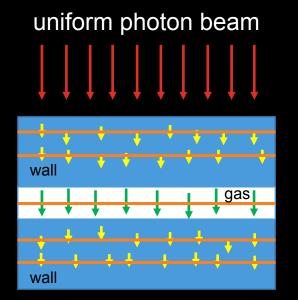
• In a medium with uniform atomic properties irradiated by a source of primary particles being spatially uniform, the charged particle fluence is also uniform and independent of the mass density distribution.

More electron tracks are , started per unit volume

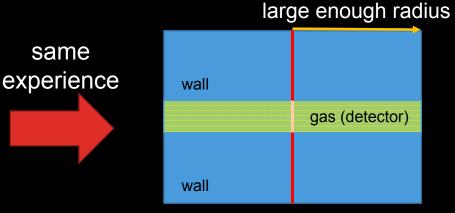
But, each track is shorter due to the higher stopping power

→ the electron fluence in the central region will be exactly the same as that in the outer region

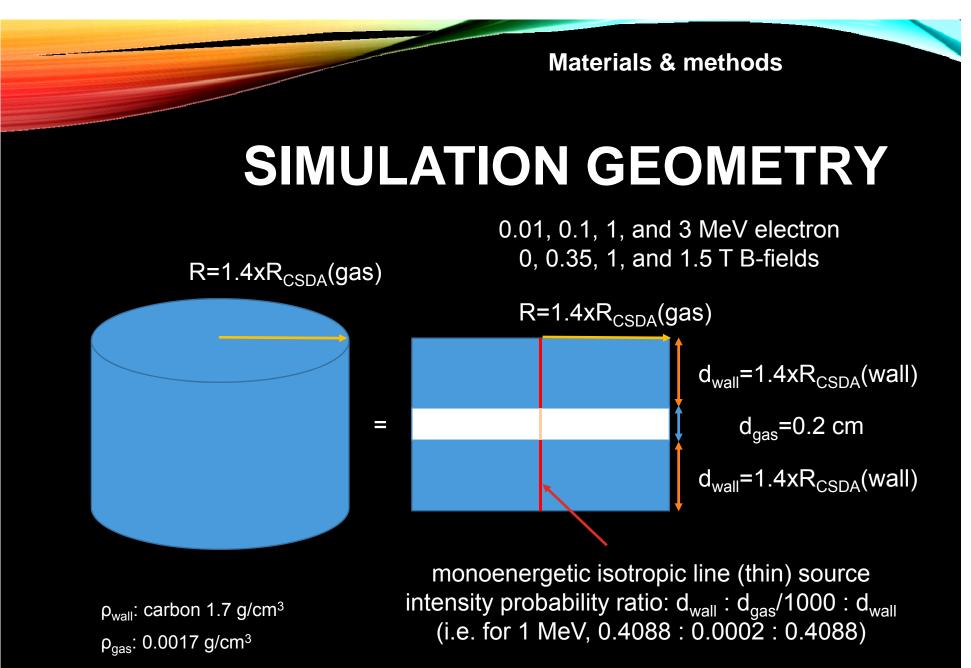
Mayles, Philip, Alan Nahum, and Jean-Claude Rosenwald, eds. *Handbook* of radiotherapy physics: theory and practice. CRC Press, 2007. p.114


FANO CAVITY TEST IN B-FIELDS

- To test the accuracy of Monte Carlo transport algorithms in the presence of magnetic fields, the Fano cavity test cannot be applied.
- Special conditions for Fano's theorem to hold in external bfields (By H. Bouchard *et al.*, Phys. Med. Biol. 2015)
 - Condition 1: isotropic & spatially uniform sources
 - (charged particle isotropy, CPI)
 - Condition 2: spatially uniform sources & density-scaled b-field


SIMULATION GEOMETRY

same



By the Fano cavity theory, every row/column has same fluence

uniform electron source per mass

The reciprocal problem involves a line source and a detector that covers the whole gas in the cavity

same carbon, but diff. density (1/1000)

R_{CSDA}: continuous slowing down approximation-range

FANO CAVITY ASSUMPTIONS

$$D = \Phi_0 p_{wall} p_{fluence} \left(\frac{\overline{L}}{\rho}\right)_{wall}^{cavity} \left(\frac{\overline{\mu}_{en}}{\rho}\right)_{wall}$$

- In the assumption of the Fano cavity theorem,
 - cavity material = wall material (uniform atomic properties)

$$\left(rac{\overline{L}}{
ho}
ight)^{cavity}_{wall}$$
 = 1, and $p_{fluence}=1$

• In the absence of photon attenuation and scatter,

$$p_{wall} = 1$$

• If the Bremsstrahlung cross section is set to zero,

$$\left(\frac{\overline{\mu}_{en}}{\rho}\right)_{wall} = \left(\frac{\overline{\mu}_{tr}}{\rho}\right)_{wall}$$

$$\therefore D = \Phi_0 \left(\frac{\bar{\mu}_{tr}}{\rho}\right)_{wall}$$

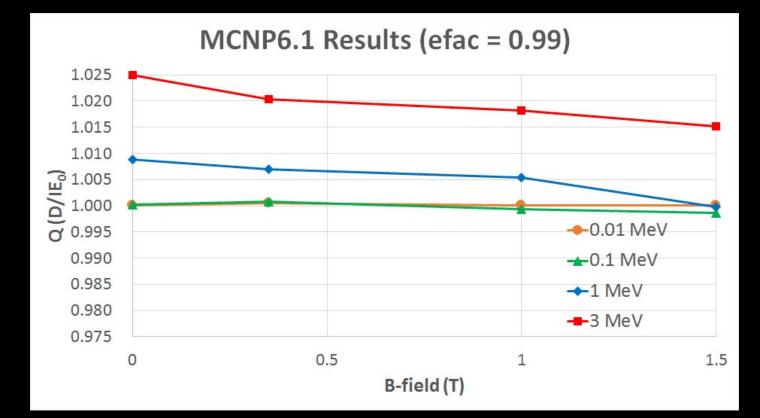
THEORETICAL RESULTS

•
$$Q = \frac{D}{\Phi_0 E_0}$$

- *D*: dose in the gas regions
- Φ_0 : the number of electrons per unit mass
- E_0 : the initial kinetic energy of the source electrons
- In the ideal case, Q would be equal to 1.

Materials & methods

MCNP6.1


- efac: stopping power energy spacing
 - $E_{n-1} = E_n \times \text{efac}$
 - A larger *efac* produces more points in the stopping power tables
 - 0.8 ≤ *efac* ≤ 0.99

• default: 0.917 (=
$$\sqrt{\sqrt{0.5}}$$
)

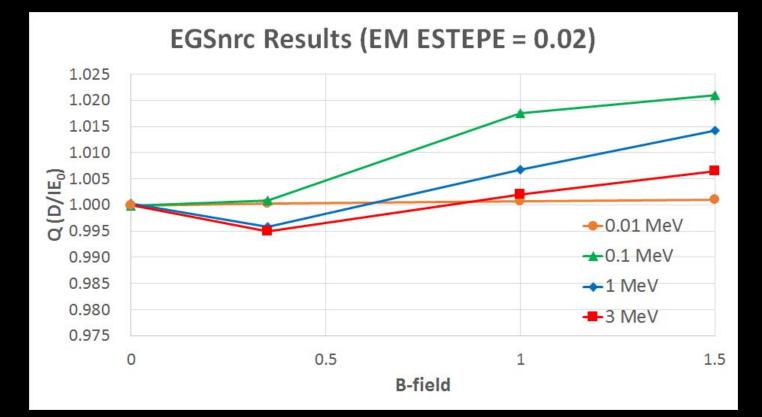
• ITS (Integrated Tiger Series)-style energy indexing algorithm was used for accurate electron dose calculation.

RESULTS (MCNP6.1)

Statistical uncertainties < symbol size

Courtesy of Jimin Lee

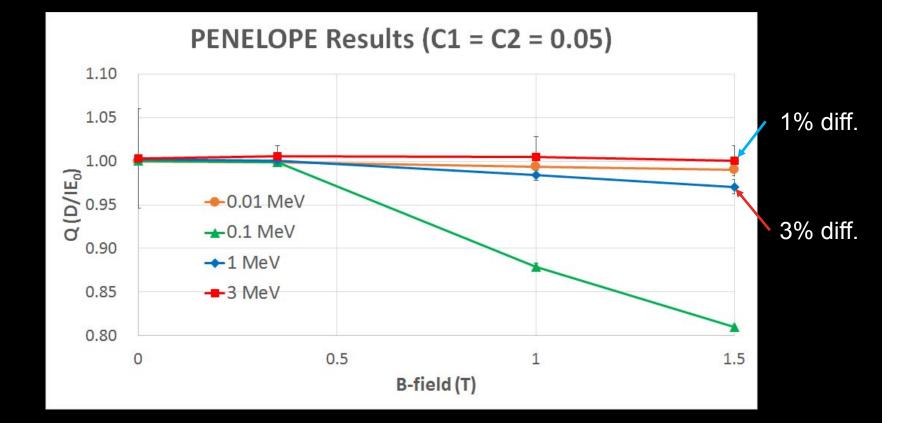
EGSNRC (2017)


- ESTEPE: Max. fractional energy loss per step
 - 0.01 ≤ ESTEPE ≤ 0.25
 - default: 0.25
- EM ESTEPE: coefficient b/w gyration radius (r_g) and pathlength to the next interaction (s).

•
$$s = \delta \cdot \frac{E_0 \gamma_0 \beta^2}{q(\vec{v}_0 \times \vec{B}_0)} = \delta \cdot r_g$$

- 0.02 ≤ EM ESTEPE ≤ 0.40
- default: 0.02

RESULTS (EGSNRC)


Statistical uncertainties < 0.03%

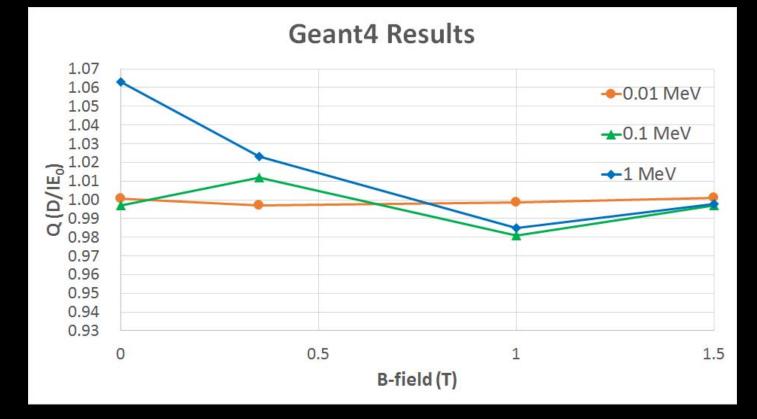
PENELOPE 2014

- C₁, C₂: determine cutoff angle that separates hard from soft elastic interactions
 - C₁: mean free path b/w hard elastic events
 - C₂: max. average fractional energy loss in a single step
 - $C_1 = 0.05, C_2 = 0.05$
 - $0 \le C_1, C_2 \le 0.2$
 - default: $C_1 = C_2 = 0.1$
- W_{CC}, W_{CR}: cutoff energies for the production of hard inelastic and bremsstrahlung events
 - W_{CC} = 10 eV, W_{CR} = 10 eV
 - Soft events ($W \le 10 \text{ eV}$), and hard events (W > 10 eV)
 - $0 \le W_{CC}$, $W_{CR} \le$ no upper limit

Results

RESULTS (PENELOPE)

Courtesy of Hochan Lee


GEANT4

- dRoverRange: max. allowed ratio b/w the step-size and the range of the particle
 - dRoverRange = 0.003
 - default: 0.2
- finalRange: step limit by the ionization process
 - finalRange = $1 \text{ nm} (10^{-6} \text{ mm})$
 - default: 1 mm

RESULTS (GEANT4)

dRoverRange = 0.003, finalRange = 1 nm

Courtesy of Dongmin Ryu

Results

SUMMARY

Low B-fields: EGSnrc & PENELOPE are accurate. High B-field: Geant4 is accurate.

1.025

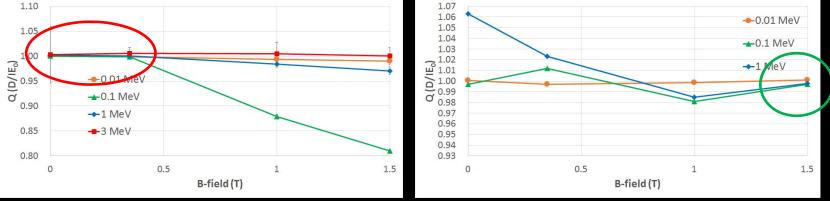
1.020

1.015

1.010

0.990

0.985


0.980

0.975

0

O (D/IE⁰) 1.005 (D/IE⁰) 0.995

MCNP6.1 Results (efac = 0.99) EGSnrc Results (EM ESTEPE = 0.02) 1.025 1.020 1.015 1.010 (0 1.005 1.000 1.000 0.995 -0.01 MeV -0.01 MeV 0.990 0.985 -1 MeV -1 MeV 0.980 --- 3 MeV ----3 MeV 0.975 0.5 1 1.5 0.5 1 1.5 0 B-field (T) **B**-field PENELOPE Results (C1 = C2 = 0.05) **Geant4 Results** 1.07 1.06 -0.01 MeV

CONCLUSION

- Radiation transport of charged particles in B-fields has been implemented in MCNP6, EGSnrc, PENELOPE, and Geant4 codes.
- In order to simulate ion-chambers for reference dosimetry in B-fields, high accuracy of MC code is needed.
- By the new Fano cavity test, each Monte Carlo code shows different accuracy.
 - MCNP6.1 shows good accuracy (< 0.2%) in low energy (kV range), but dose difference larger than 2% in 3 MeV.
 - EGSnrc shows acceptable dose differences (< 0.5%) in low Bfield (≤ 0.35 T), but accuracy decreases as B-field increases.
 - PENELOPE shows the best accuracy in all results except 0.1 MeV (> 10% diff.).
 - Geant4 needs more simulation to compare the results from other codes.

REFERENCES

- EGSnrc
 - Malkov, V. N., and D. W. O. Rogers. "Charged particle transport in magnetic fields in EGSnrc." Medical Physics 43.7 (2016): 4447-4458.
- PENELOPE
 - Sempau, J., and P. Andreo. "Configuration of the electron transport algorithm of PENELOPE to simulate ion chambers." *Physics in medicine and biology* 51.14 (2006): 3533.
 - De Pooter, J. A., L. A. De Prez, and H. Bouchard. "Application of an adapted Fano cavity test for Monte Carlo simulations in the presence of Bfields." *Physics in medicine and biology* 60.24 (2015): 9313.
 - Bouchard, Hugo, et al. "Reference dosimetry in the presence of magnetic fields: conditions to validate Monte Carlo simulations." *Physics in medicine and biology* 60.17 (2015): 6639.
- Geant4
 - Elles, S., et al. "Geant4 and Fano cavity test: where are we?." *Journal of Physics: Conference Series*. Vol. 102. No. 1. IOP Publishing, 2008.
 - O'Brien, D. J., et al. "Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors." *Medical Physics* 43.8 (2016): 4915-4927.

THANK YOU