

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 17-19, 2017

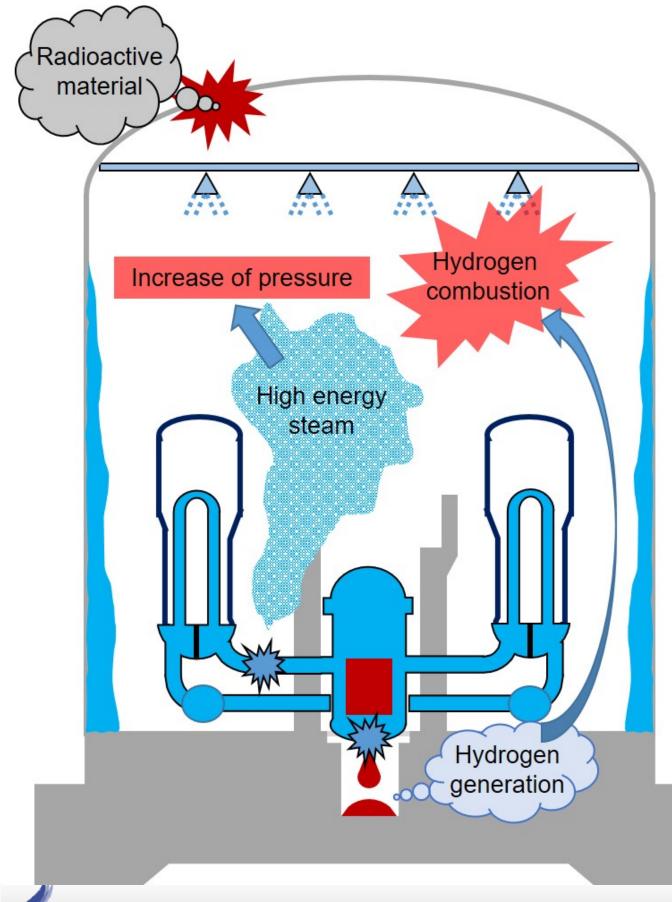
Modification of the Condensation Heat Transfer Model of the MELCOR code under the Thermal-Hydraulic **Conditions of a PWR Containment**

2017.05.19.

^aJ.M. Yoo, ^aJ.H. Kang, ^aB.J. Yun, ^bS.W. Hong, ^aJ.J. Jeong^{*}

^aSchool of Mechanical Engineering, Pusan National University(PNU)

^BSevere Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute(KAERI)


Contents

- 1. Introduction
- 2. Description of the models and experiments
 - Condensation models
 - Selected experiments for model assessment
- 3. Assessment and improvement
 - Assessment results
 - Improvements of the MELCOR model
 - Validation of the improved model
- 4. Summary & conclusion

PNU, the Premier! Nuclear Systems Major, School of Mechanical Engineering, Pusan National University

Introduction (1)

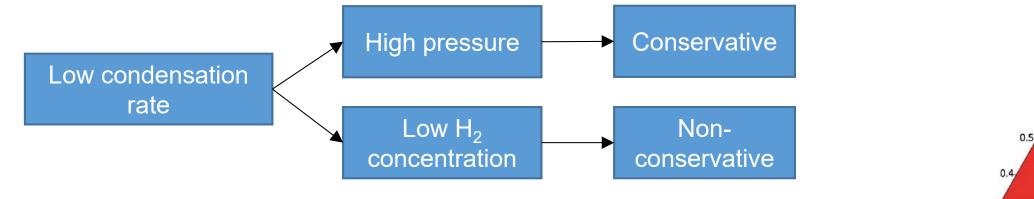
Containment

- The last barrier of defense-in-depth \mathbf{O}
- Threats to the containment \bigcirc
 - Increase of pressure
 - Hydrogen combustion

Importance of the condensation

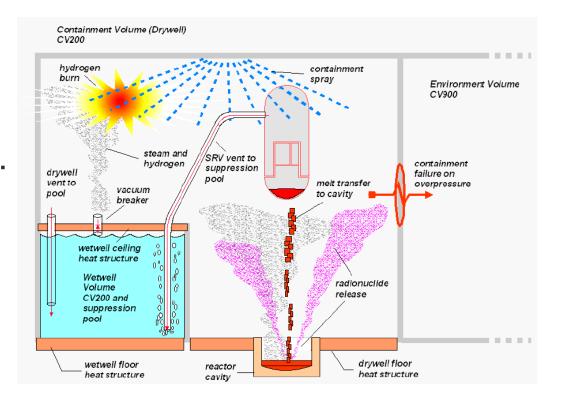
- Condensation heat transfer on the \bigcirc containment wall and PCCS
 - Contribution to decompression of containment
- Relationship between condensation rate and \mathbf{O} hydrogen concentration
 - Condensation rate \uparrow , hydrogen ratio \uparrow
 - Condensation rate \downarrow , hydrogen ratio \downarrow

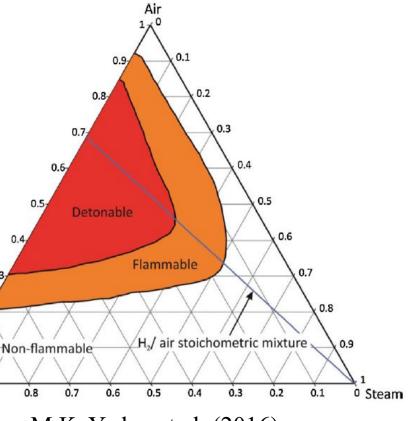
Nuclear Systems Major, School of Mechanical Engineering, Pusan National University PNU, the Premier!


Maintenance of the integrity of the containment

Introduction (2)

MELCOR code


- Fully integrated, engineering-level computer code. \bigcirc
- Primary purpose: severe accident analysis of a LWR. \mathbf{O}
- Analysis of the whole process of the accident: \mathbf{O}
 - \succ Thermal-hydraulic behavior, core damage process, behavior of a fission product, hydrogen generation, combustion...
- Conservative condensation model for pressure \bigcirc (= under-prediction of the condensation rate)



- → Conflict between pressure calculation and hydrogen distribution calculation.
- \rightarrow So, the accurate condensation model is required.

Nuclear Systems Major, School of Mechanical Engineering, Pusan National University **PNU**, the **Premier**!

M.K. Yadav et al. (2016)

0.9

Hydrogen 1

4/16

Introduction

- II. Description of the models and experiments
 - Condensation models
 - Selected experiments for model assessment
 - I. Assessment and improvement
 - Assessment results
 - Improvements of the MELCOR model
 - Validation of the improved model
- IV. Summary & conclusion

Nuclear Systems Major, School of Mechanical Engineering, Pusan National University

Condensation models

Model	Types	Correlation	Fe
MELCOR	Theoretical	$h_f \left(T_i - T_w\right) = h_{fg} h_m \rho_v \ln\left(\frac{P_t - P_{s,i}}{P_t - P_{s,b}}\right) + h_{conv} \left(T_b - T_i\right)$ $h_m = Sh \frac{D}{L_c}, Sh = NuSc^{0.33}Pr^{-0.33}$	 Stagnant film, d Molar based Fic <i>h_f</i>: film tracking Wide application
Liao (2007)	Theoretical	$\begin{split} h_{f}\left(T_{i}-T_{w}\right) &= h_{cond}\left(T_{b}^{sat}-T_{i}\right) + h_{conv}\left(T_{b}-T_{i}\right) \\ h_{cond} &= Sh\frac{k_{c}}{L_{c}}, \substack{k_{c}=condensation\ thermal\ conductivity} \end{split}$	 Mass based Fich <i>h_f</i>: Nusselt film Suction and fog Wide application
Dehbi (2015)	Semi- theoretical	$q'' = h(T_b - T_w)$ $h = 0.185D^{2/3} \left(\rho_w + \rho_b\right) \left(\frac{\rho_w - \rho_b}{\mu}\right)^{1/3} \frac{h_{fg}}{(T_b - T_w)} \ln\left(\frac{1 - W_{s,w}}{1 - W_{s,b}}\right)$	 Neglect of the c Mass based Fich Data fitting (six Natural convect No local parameter
Uchida (1965)	Empirical	$q'' = h \left(T_b - T_w \right)$ $h = 380 \left(\frac{W_s}{1 - W_s} \right)^{0.7}$	 Simple form Partial pressure Natural convect Conservative re No local parameter

*HMTA: Heat and Mass Transfer Analogy.

*Sherwood number correlation is decided by the flow regime.

PNU, the Premier! Nuclear Systems Major, School of Mechanical Engineering, Pusan National University

Features

diffusion only ick's law & HMTA* ng model ion range^{**}

ck's law & HMTA n theory g formation effect on range

convection and film ck's law & HMTA x experiments) ction only neter

e of NC gas: 1atm ction only esult for pressure neter

Selected experiments for model assessment

Selection criteria

- Thermal-hydraulic conditions similar to those inside the containment during accidents Ο
 - > Pressure: 1.0-5.0 bar, air mass fraction: 0.1-0.9, superheated-saturated steam, natural-forced convection
- External surface condensation on a containment wall and PCCS \mathbf{O}
 - Vertical plate: COPAIN, CONAN, Park, Anderson
 - Vertical pipe: Dehbi, Kang

Experiment (geometry)	Air mass fraction	Pressure [bar]	Steam condition [K]	Wall subcooling [K]	Flow condition	Number of data sets (points)
COPAIN (plate)	0.49-0.87	1.0-4.0	7-10	14-45	Natural- Forced	6 (68)
CONAN (plate)	0.13-0.72	1.0		40-45	Mixed	10 (80)
Park (plate)	0.20-0.70	1.0		20-50	Natural- Forced	16 (160)
Anderson (plate)	0.40-0.86	1.0-3.0	Saturated steam	10-60	Natural	32 (32)
Dehbi (pipe)	0.25-0.89	1.5-4.5		10-50	Natural	42 (42)
Kang (pipe)	0.1-0.7	1.0-4.0		10-50	Natural	52 (52)

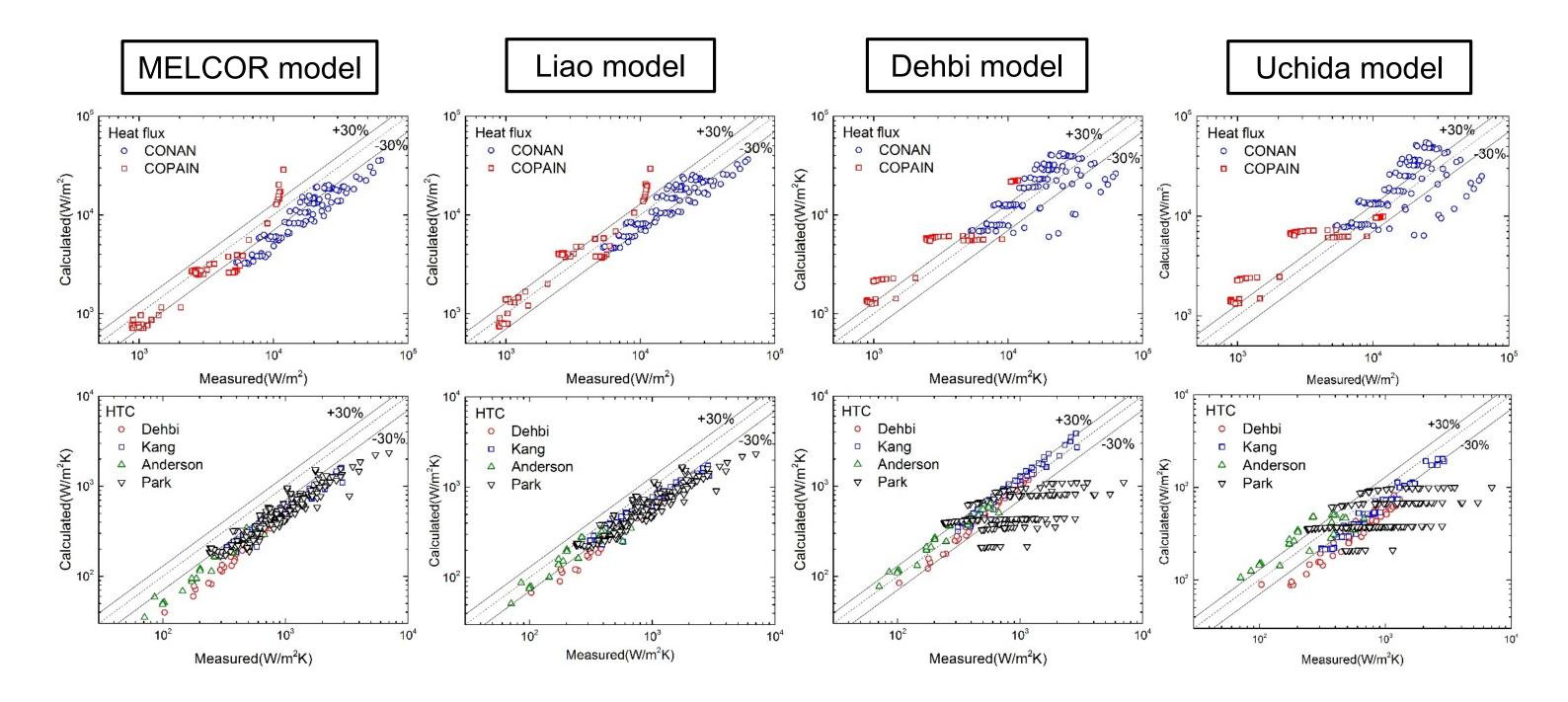
PNU, the Premier!

Nuclear Systems Major, School of Mechanical Engineering, Pusan National University

7/16

. Introduction

- II. Description of the models and experiments
 - Condensation models
 - Selected experiments for model assessment
- III. Assessment and improvement of the models
 - Assessment results
 - Improvements of the MELCOR model
 - Validation of the improved model
- IV. Summary & conclusion

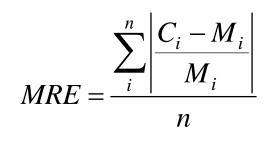

PNU, the Premier!

Nuclear Systems Major, School of Mechanical Engineering, Pusan National University

Assessment results (1)

Calculation vs experiment

PNU, the Premier! Nuclear Systems Major, School of Mechanical Engineering, Pusan National University



9/16

Assessment results (2)

Quantitative analysis

- Accuracy \mathbf{O}
 - Mean relative error (MRE)

Standard deviation (SD) \succ

SD = 1	$\boxed{\sum_{i=1}^{n} \left(\frac{C_{i} - M_{i}}{M_{i}}\right)^{2}}$
SD =	n-1

- Precision \mathbf{O}
 - To find a linear fitting line, $C_i = aM_i + b$ using a least-square approach

$$f(a, b) = \sum (aM_i + b)$$

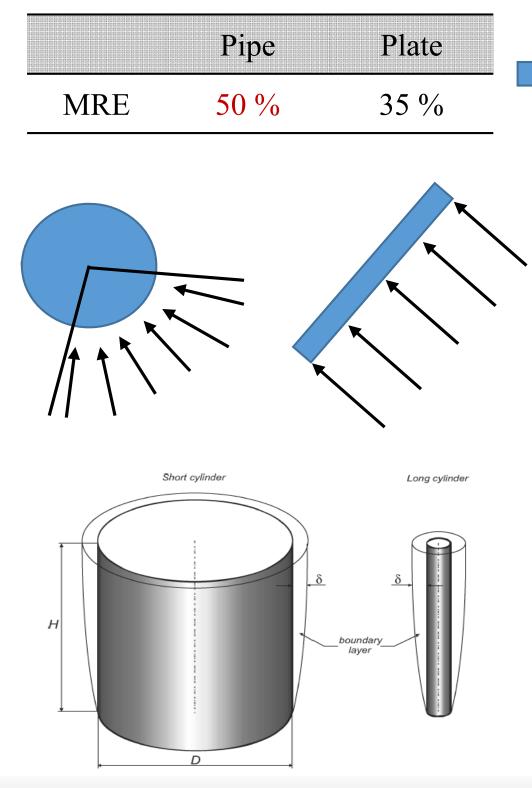
Deviation from the fitted line (DFL)

$$DFL = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \left(aM_i + b - b\right)^n}$$

	d! Model		Mean relative error (%)	Standard deviation (%)	Linear fitting		Deviation from
Selecte					Slope, a	Intercept, b	the fitted line
(MELCOR	Heat flux	34.7	39.2	0.54	1615.8	265.7
		HTC	46.6	47.9	0.43	80.2	7.61
	Liao	Heat flux	28.9	35.3	0.62	2957.8	319.9
		HTC	31.0	33.9	0.47	163.1	10.12
Dehb	Dehhi	Heat flux	51.4	63.3	0.69	6510.3	681.4
	DCIIDI	HTC	32.4	39.6	0.33	350.2	25.46
	Uchida	Heat flux	56.2	71.7	0.76	6139.0	877.1
-		HTC	43.3	47.2	0.23	285.17	14.40

 $^{*}C_{i}$: calculated value M_{i} : measured value

PNU, the Premier! Nuclear Systems Major, School of Mechanical Engineering, Pusan National University


 $(-C_i)^2$

 $-C_i$)²

Improvements of the MELCOR model (1)

Curvature effect

Comparison of the MRE between vertical pipe and vertical plate. \mathbf{O}

The presence of effects depending on the shape.

- Pipe has a large solid angle (=curvature effect)
- Increase of the heat and mass transfer
- The larger L/D, the greater the curvature effect
- Dehbi: L/D = 92, Kang: L/D = 62
- → Application of the factor suggested by Popiel (2008) under natural convection condition

$$Nu_{tube} = Nu_{plate} \times \left(1 + 0.3 \left(\sqrt{32}Gr^{-1/4}\frac{L}{D}\right)\right)^{0.909}$$

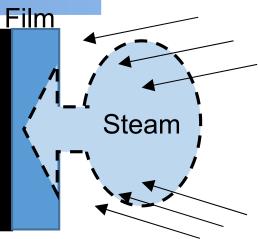
MRE of the pipe: 50 % \rightarrow 40 % \checkmark

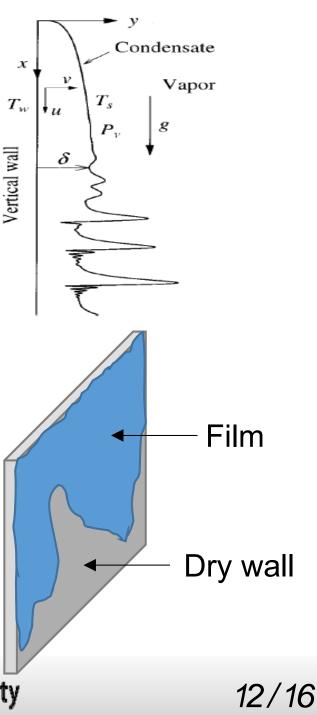
Nuclear Systems Major, School of Mechanical Engineering, Pusan National University PNU, the Premier!

Improvements of the MELCOR model (2)

Multiplier

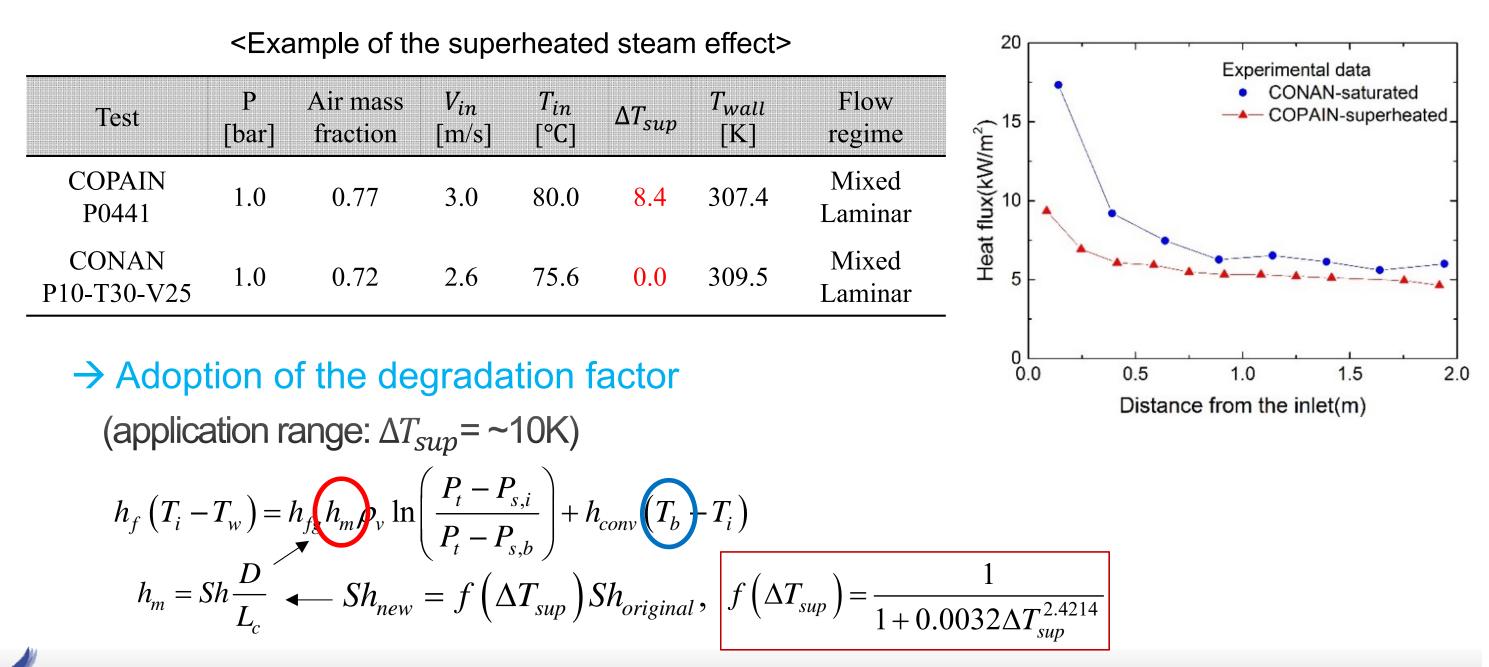
- Under-prediction of MELCOR model
- Adoption of the multiplier obtained through the data fitting


$$Nu_{new} = 1.71 Nu_{original}$$


Estimated physical meaning of the multiplier

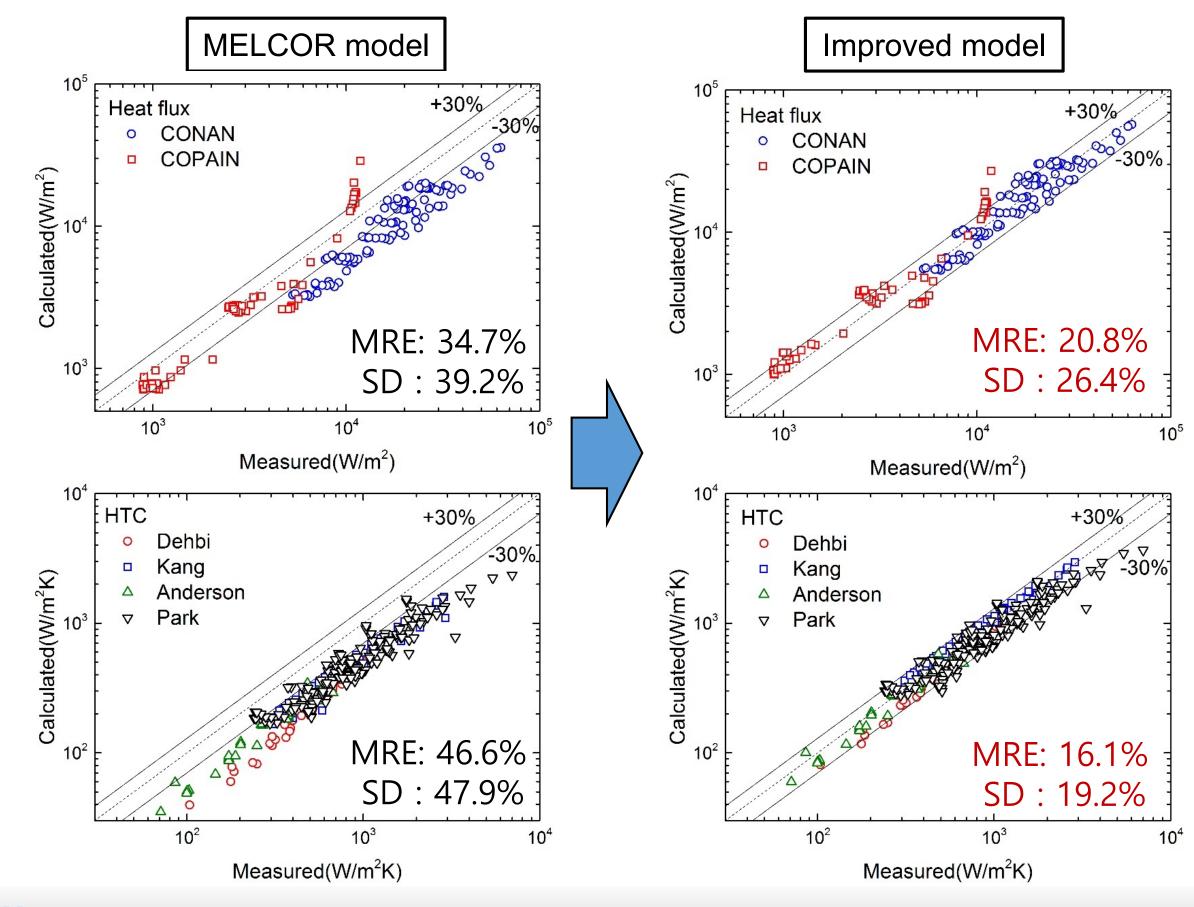
- Suction
 - ✓ Phase change (Steam → Water): large volume change
 - \checkmark This leads to the mixture gas being drawn near the film
 - ✓ Enhancement of the heat and mass transfer
- Film waviness
 - \checkmark Increase of the interfacial area
 - Thinning of the film thickness
 - Enhancement of the heat and mass transfer
- Change of the film coverage rate
 - \checkmark Formation of the dry wall due to the interface friction and NCGs
 - ✓ Drop-wise condensation
 - ✓ Increase of condensation rate

PNU, the Premier! Nuclear Systems Major, School of Mechanical Engineering, Pusan National University



Improvements of the MELCOR model (3)

Superheated steam effect


- The absence of model for condensation of the superheated steam in MELCOR
 - > Degradation of the condensation rate by superheated steam which needs to energy and time to cool down with saturated steam

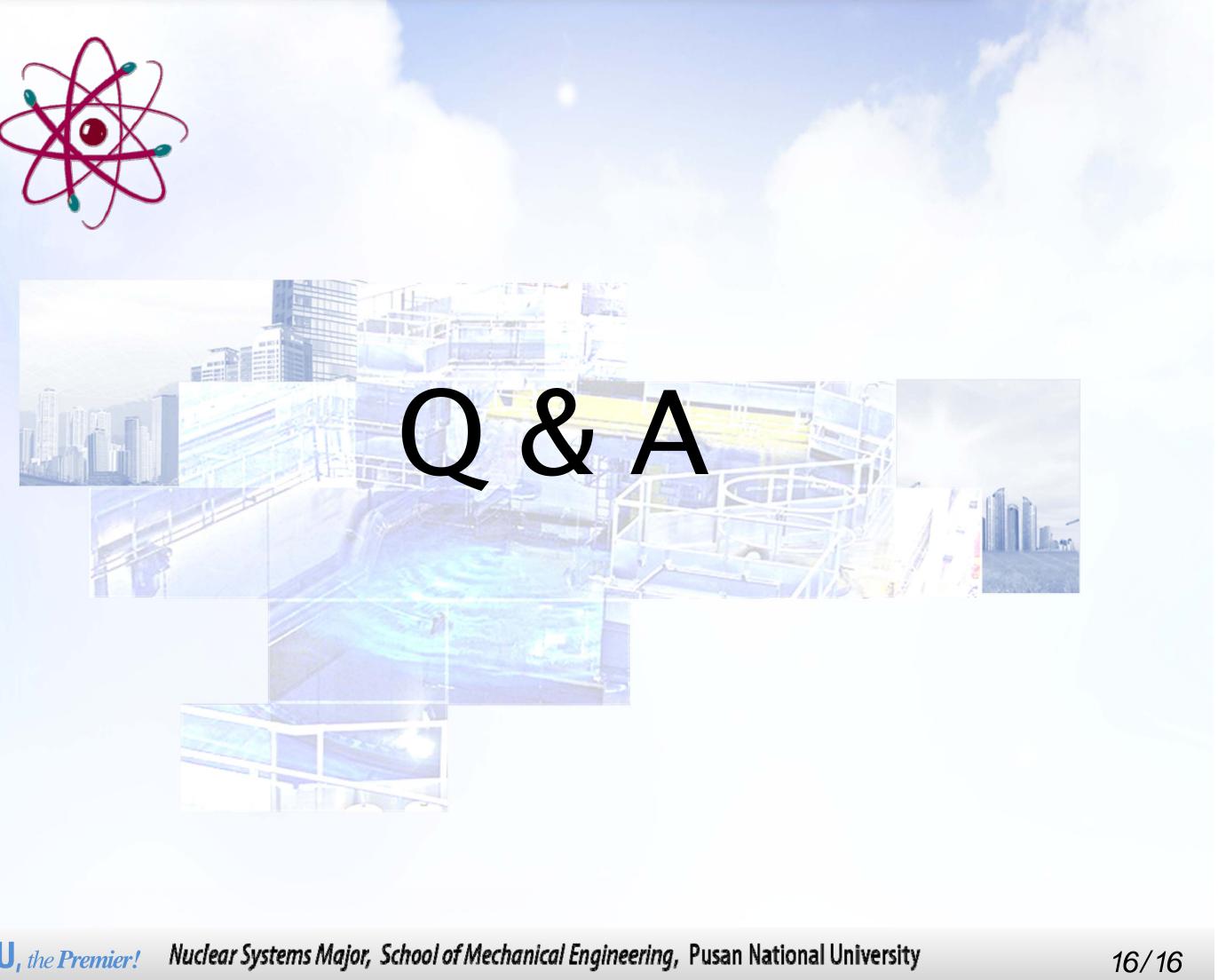
Nuclear Systems Major, School of Mechanical Engineering, Pusan National University **PNU**, the **Premier**!

Validation of the improved model

PNU, the Premier! Nuclear Systems Major, School of Mechanical Engineering, Pusan National University

14/16

Summary & conclusion


- The assessment of the condensation heat transfer models
 - Models: MELCOR, Liao, Dehbi and Uchida.
 - > Assessment results
 - ✓ MELCOR model consistently under-predicted most of experimental data about 40%.
 - \checkmark The accuracy and precision of the Uchida and Dehbi model were not good.
 - \checkmark The accuracy of the Liao model was relatively good, but the precision was worse than the MELCOR model.
 - \rightarrow The MELCOR model was chosen as the base model for improvement.
- Improved MELCOR model shows good agreements with most of • experimental data (mean relative error 18%).
 - > Improvements: curvature effect, multiplier and superheated steam effect
- The improved MELCOR model can be applied to in-containment thermalhydraulics for safety analysis, PCCS design, and accident management.

Nuclear Systems Major, School of Mechanical Engineering, Pusan National University **PNU**, the **Premier**!

15/16

