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1. Introduction 

 
Residual stress is a critical element in determining the 

integrity of parts and the lifetime of welded structures. 

Additionally, the residual stress of a welding zone is an 

influential factor in generating primary water stress 

corrosion cracking (PWSCC), and thus, it is essential to 

accurately estimate the residual stress to inhibit the 

occurrence of PWSCC. 

The residual stress estimation technique is 

computationally challenging and requires appropriate 

idealization and the simplification of material behavior, 

geometry, and process-related parameters. Numerical 

modeling is an ideal method if its results can be verified 

with experimental results. Finite element analysis (FEA) 

methods were utilized to anticipate residual stress 

generated by welding. Simulations of welding include 

thermomechanical FEAs on the welding area [2]. 

The aim of this study is to estimate the residual stress 

of a welding zone under manifold welding conditions 

and known pipeline geometries by a cascaded support 

vector regression (CSVR) process. It is termed as CSVR 

when a support vector machine (SVM) is applied to 

regression analysis and its calculation process is iterated 

before an overfitting problem happens. 

 

2. A Method to Estimate the Welding Residual 

Stress 

 

The cascaded support vector regression method 

comprises of a calculation processes of serially 

connected SVR modules. That is, the CSVR model 

calculates relevant variables by adding an SVR module 

serially and iteratively. All the SVR modules involve 

the same calculation process.  

 

2.1 Support Vector Regression Model 

 

The primary principle of the SVR method involves 

nonlinearly converting the initial input data vector x(t) 

into vectors ( )Φ x of a high dimensional kernel-induced 

characteristic space and the nonlinear model performs a 

linear regression analysis in the high dimensional 

characteristic space. The SVR model is constructed 

using N learning data. The learning data are expressed 

as  
1

( ( ), ( )
N m

t
t y t R R


 x , in which y(t) denotes the 

corresponding output value from which the link between 

the input data and the output data is learned. The SVR 

model can be represented as follows [3]: 
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where ( )t x  denotes a feature that is nonlinearly 

transformed from the input space x(t), 

 1 2

T

Nw w wW , and  1 2

T

N  Φ . 

The parameter W denotes the weight of support vectors, 

and the constant b denotes the bias. 

A linear learning machine in which a convex 

functional is minimized by a learning algorithm was 

used to create a nonlinear function. The convex 

functional was represented as a regularized risk function. 

The parameters W and b are computed by minimizing a 

regularized risk function that is expressed as given 

below [3]: 
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The parameter μ is a user-specified regularization 

parameter. This parameter determines the tradeoff that 

exists between the norm of the weight vectors and the 

estimation error. An increase in the regularization 

parameter μ imposes more penalties on bigger errors, 

which results in a decrease in estimation errors. An 

increase in the norm of weight vectors could also 

achieve this in a smooth manner. However, increasing 

the norm of the weight vectors does not confirm the 

optimal generalization property of the SVR model. The 

constant ε is a user-specified parameter, and the ε-

insensitive loss function can be expressed as 

( ( )) ( )f t y t


x  [4]. The extension of the insensitivity 

zone ε signifies a decrease in the prerequisite for 

estimation accuracy, and it reduces the number of 

support vectors leading to data compression. 

Furthermore, the increment of the insensitivity zone ε 

plays a role of smoothening the highly polluted data. 

The aforementioned regularized risk function is 

changed into a constrained risk function, as shown 

below: 
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subject to the following constraints 
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where 
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The ( )t  and 
*( )t  are parameters that denote upper 

and lower constraints. It was possible to resolve the 

problem of constrained optimization in Eq. (4) by 

applying the Lagrange multiplier method to Eqs. (4) and 

(5), followed by an existing quadratic programming 

method. Finally, the regression function of Eq. (1) is 

expressed as follows: 
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In Eq. (6),  ( ) ( ) ( ( ))TK t tx, x Φ x Φ x  is termed the 

kernel function. Several coefficients  *

t t   had 

nonzero values that are solved by a quadratic 

programming technique. The learning data points 

corresponding to the nonzero values were termed 

support vectors and had estimation errors equal to or 

greater than ε. That is, the support vectors correspond to 

the data points located closest to the regression function. 

This study used the following radial basis kernel 

function: 
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where σ represents the sharpness of the radial basis 

kernel function. 

 

2.2 Cascaded SVR method 

 

The CSVR model used in the present study 

comprised more than two SVR modules, and the results 

of the preceding SVR module were transferred to the 

next module. That is, the proposed CSVR model was 

continually trained at each SVR module. Thus, this 

process enabled the CSVR model to exhibit good 

performance. 

An excessive increase in the number of SVR modules 

could cause an overfitting problem in the CSVR model. 

In other words, the CSVR model was optimized for only 

one learning data set. In the event of the occurrence of 

overfitting, the CSVR performance for the learning data 

indicated steady improvement, although its performance 

deteriorated with respect to other data sets such as 

verification data, and test data. 

One regularization technique has been optimally 

utilized as a machine learning method that was able to 

avoid the overfitting problem [5] and that became a 

popular method to resolve mathematically ill-posed 

problems. It was possible to overcome these overfitting 

problems through regularization, in which the CSVR 

model was verified by using another data set excluding 

the learning data set. The learning data set was used to 

resolve the support vector weights *

t t   and the bias 

b in Eq. (6) of the SVR modules. The verification data 

was used to prevent the overfitting problem by limiting 

the number of serially connected SVR modules. The test 

data were utilized to verify the developed CSVR model. 

An index to evaluate the occurrence of an overfitting 

problem at the i-th module is expressed as the sum of 

the squared errors for the verification data, as follows: 
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where ˆiy  denotes the estimated output at the i-th SVR 

module, and VN  denotes the number of the verification 

data. 

If the condition ( 1i iE E  ) was satisfied, then an 

SVR module was added, and the CSVR model 

optimized the added module. The SVR module-adding 

process stopped when 1i iE E  . However, if the 

condition ( 1i iE E  ) was satisfied, then the sum of the 

squared estimation errors for the verification data 

increased based on the increase in the number of 

modules. Following this, if the process of adding SVR 

modules continued, then the CSVR model tended to 

exhibit overfitting. The number of SVR modules G 

denoted the number of modules that was finally 

determined to inhibit the overfitting problem. 

 

3. Data Applied to Estimation in Residual Stress 

 

3.1 FEA for Residual Stress Data 

 

It is necessary to obtain the residual stress data to 

develop a CSVR model to estimate the residual stress of 

a welding zone. An FEA method to analyze the residual 

stress of a welding zone was developed, and parametric 

FEAs were conducted using the ABAQUS code [6] to 

obtain the residual stress data of dissimilar metals under 

manifold welding conditions. The FEAs considered the 

welding joint of dissimilar metals between a nozzle and 

a pipeline because these joints were recognized as being 

exceedingly vulnerable to PWSCC under a water 

chemistry environment in the primary systems of NPPs. 

Fig. 1 includes the enlarged welding zone. The residual 

stress of a welding zone is typically affected by several 
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factors shown in Table 1. Therefore, combinations of 

these factors were utilized as input data in the 

parametric FEA analyses. Table 1 lists the values of the 

influential parameters and the pipe constraint conditions. 

 
 Table I: Welding conditions for analyzing the welding 

stress 

Shape of the pipeline End 

section 

constraint 

Heat 

input,  

H (kJ/s) 

Weld 

metal 

stress  

(MPa) Ro RN Ro/t 
Pass 1; 

others 

205.6 300.10 4.8778 

Restrained 

 

Free 

0.49764; 

1.2690 

0.55985; 

1.4277 

0.62205; 

1.5863 

0.68426; 

1.7449 

0.74646; 

1.9036 

192.33 

203.06 

213.70 

224.38 

235.07 

205.6 271.75 6.8763 

205.6 256.80 8.8735 

 

The finite element simulation for welding 

theoretically comprised a thermal analysis, which 

indicated a thermal process during welding and this was 

followed by structural analysis based on the results of 

the thermal analysis. Thus, a serially connected analysis 

of thermal-stress was used to compute the residual stress 

of a welding zone. Three types of two-dimensional 

axisymmetric finite element models were developed 

based on pipe thickness [7]. 

 

3.2 Data Selection 

 

In the previous study [7], a dissimilar welding joint 

between a nozzle and pipe was assumed in the analyses 

as shown in Fig. 1 because it is highly vulnerable to 

PWSCC in the primary system of NPPs. Thus, 6300 

data points of the residual stress for the welding metal 

were obtained along all the paths. The conditions and 

values for the analysis are shown in Table 1. 

In this study, each cluster center was determined by a 

subtractive clustering (SC) scheme [8]. The SC scheme 

worked by producing several clusters in the m-

dimensional input data space. The SC scheme 

considered each data point as a latent cluster center. The 

potential value of every input data point is defined as 

the Euclidean distance function with respect to other 

input data points, as follows [8]: 
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where rα denotes a radius that defines the vicinity 

between the data points; this radius has a sizeable 

influence on the input data potential. The input data 

point with the highest potential value was chosen as the 

first cluster center after the potential values of all input 

data were calculated. 

Following this, a number of potential values were 

subtracted from each data point as a function of each 

point’s distance from the pre-chosen cluster center. The 

data points positioned near the pre-chosen cluster center 

tended to exhibit a considerably decreased potential 

value and thus were not selected as the next data cluster 

center. When the potential values of every data point 

were recalculated using Eq. (10), the data point with the 

highest revised data potential value was selected as the 

next data cluster center, as follows: 
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where *

ix  denotes the data point (position) of the i-th 

cluster center, and *

iP  denotes its potential value. In the 

case in which a specified number of cluster centers is 

selected, the calculation using Eq. (10) ceased. 

Otherwise, the calculation continued iteratively. In this 

study, rα and rβ  were determined such that the number 

of the cluster centers was equal to the number of the 

learning data, and 1.2r r  . 

Alloy 

82/182

SA508STS316

Ro RN
Buttering

Center path

Inside path

t

  
Fig. 1. Welding area of dissimilar metals and estimation paths 

in the welding area for data preparation. 

 

4. Experimental Results 

 

The performances of the CSVR for the inside path 

and the center path are shown in Table 2 and Table 3, 

respectively. The development data involve combined 

data including learning and verification data to optimize 

the CSVR model. Since the development data include 

learning data and verification data, it should be noted 

that the relative maximum errors of the development 

data are the maximum values of the relative maximum 

errors for the learning data and the verification data. 

Consequently, referring to the two tables, the CSVR 

method can provide a good estimate for the residual 

stress of a welding zone under all welding conditions.  

Figures 2 and 3 provide graphs that show a 

comparison of the target residual stress and the 

estimated residual stress based on each estimation path 

under specific welding conditions included a weld metal 

strength = 213.70 MPa, heat input = 0.62205 kJ/s for 
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the initial welding pass and 1.5863 kJ/s for other passes, 

and Ro/t = 4.8778, as shown in Table 1. Figure 4 shows 

the RMS error values for the development based on the 

number of CSVR modules.  

The results confirmed that the CSVR had accurately 

estimated the residual stress of a welding zone. 

 
Table II: Performance of the CSVR model in estimating the 

residual stress of a welding zone (inside path) 

Constraint 

of end 

section 

No. of 

SVR 

modules 

Data type 

RMS 

error 

(%) 

Relative 

max. 

error 

(%) 

Restrained 4 
Development 3.301 53.641 

Test 1.484 7.840 

Free 10 
Development 2.829 27.804 

Test 2.519 9.296 

 
Table III: Performance of the CSVR model in estimating 

the residual stress of a welding zone (center path) 

Constraint 

of end 

section 

No. of 

SVR 

modules 

Data type 

RMS 

error 

(%) 

Relative 

max. 

error 

(%) 

Restrained 11 
Development 0.729 11.211 

Test 1.041 3.406 

Free 5 
Development 1.285 24.936 

Test 0.980 2.695 
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Fig. 2. Estimation performance of the residual stress of a 

welding zone based on the inside path under free constraint. 
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Fig. 3. Estimation performance of the residual stress of a 

welding zone based on the center path under restrained 

constraint 
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Fig. 4. Estimation performance of the CSVR model for 

development data under the each welding conditions. 

 

5. Conclusions 

 

In this study, the CSVR model was presented to 

assess the residual stress of a welding zone. The 

proposed CSVR model was applied to numerical data 

obtained from the FEA. Referring to the results, it was 

confirmed that the CSVR model is a methodology that 

can precisely estimate the residual stress of a welding 

zone. Consequently, the proposed CSVR model is an 

optimal model to estimate the residual stress. Therefore, 

CSVR can be used to assess welded structure integrity. 

It can also provide an early estimate of unfavorable 

conditions by accurately estimating the residual stress of 

structures of which material utilize SA508 and a 

dissimilar metal welding joint between the nozzle and 

the pipeline vulnerable to PWSCC under a water 

chemistry environment in the primary systems of NPPs. 
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