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1. Introduction 
 

Deterioration of heat transfer in an upward-flowing 
fluid in vertical tubes has long been an interesting but 
difficult subject since the introduction of supercritical 
pressure water as a heat transporting medium in fossil 
fuel power plants. The study of fluid-thermal behaviour 
under supercritical pressure either by experiment or 
numerical method is not simple and easy due to the 
drastic property variation shown in Figure 1. 

As a supplementary means to experiments, numerical 
simulations were sought by many researchers to 
investigate what the mechanism behind the deterioration 
of heat transfer is for decades. However, not a single 
existing turbulence model was successful in reproducing 
the sudden temperature rise occurring at the heated tube 
wall, in which a buoyancy-influenced fluid flows upward 
against gravity. 

In this paper, first, the derivation of ܲݎ௧ି௩  is briefly 
described, and the discussion of the damping length (ܣା), 
which appears in the damping function in the low-
Reynolds number turbulence model, is discussed. Then 
the results of numerical simulation using above-
mentioned two critical factor are presented, and some 
conclusions will be drawn. 
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Figure 1. Variation of reduced properties of water and CO2 
with reduced pressure and temperature. Data from the NIST 
standard reference database [1] 

 
2. Methods of Analysis 

 
In this section the procedures of how the property-

dependent Prandtl number, ܲݎ௧ି௩, and relation between 
shear stress and damping length, ܣା, were derived are 
described. 

 
2.1 Property-dependent turbulent Prandtl number, ܲݎ௧ି௩ 

 

Reynolds [ 2 ] reviewed more than thirty ways for 
predicting Prt and the Schmidt number (Sct) and showed 
that Prt may have some value far from unity. Kays [3] 
examined the then-available experimental data on Prt for 
a two-dimensional turbulent boundary layer; however, 
the examination was limited to cases with mild property 
variations. Prt has been treated as a constant of around 
0.9 or unity in most earlier numerical works. However, 
there are many cases where Prt is far from unity. 

Bae [ 4 ] suggested a new formulation of Prt by 
extending the Reynolds analogy and the behavior of 
turbulent boundary layer in a circular tube. The new 
formulation of Prt begins with revisiting the well-known 
Reynolds analogy, which implies the equality of 
diffusivity between momentum and heat transfer [5]. 
Having included the property variations as well as 
velocity and temperature in the procedure of deriving the 
ratio between turbulent momentum and energy transfer, 
the property-dependent Prt was derived as follows. 
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The functions ݄ଵ and ݄ଶ are added to make sure that the 
value of ܲݎ௧ି௩ approaches the asymptotic values at the 
two extremes; the wall and the centerline of a tube.  

݄ଵ ൌ 1 െ ݁ି௬
శ శ⁄ (2)

݄ଶ ൌ 0.5 ቈ1  ݄݊ܽݐ ቆ
ܤ െ ାݕ

10
ቇ	 (3)

The constant 10 in Eq. (3) is set as to make sure that the 
function ݄ଶ varies smoothly around ݕା ൌ  and beyond ,ܤ
that point the flow is in the wake region. The location of 
ାݕ ൌ  is virtually outer edge of a turbulent boundary ܤ
layer, so ܤ was set as the ݕା value at ݎ ൌ 0.8ܴ. 

 
2.2 Shear stress under Buoyancy 
 
2.2.1 Without velocity overshoot  
 

First the case without velocity overshoot, which 
implies an appearance the local velocity peak (not the 
maximum) is presented.  

In the low-Reynolds number turbulence model, the 
eddy viscosity is expressed as  

௧ߤ̅ ൌ ௧ߥ̅ߩ̅ ൌ ఓܥߩ̅ ఓ݂

෨݇ଶ

̃ߝ
(4)

where the damping function ఓ݂ is defined in the Myong-
Kasagi model [6] as 
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ఓ݂ ൌ ൣ1 െ ݁ି௬
శ శ⁄ ൧൫1  3.45 ܴ݁௧

ଵ/ଶ⁄ ൯	 (5)

The damping length, ܣା, has been treated as a constant 
in most of earlier literature, but in this paper will be 
treated as a function of local shear stress. 

Following the procedure taken by Cebeci [7] when he 
derived a relation between shear stress at the buffer layer 
and damping length, a similar relation was derived under 
an assumption that volume expansion due to density 
decrease (temperature increase) can be treated as wall 
mass suction.  

When we treat the wall normal velocity as a constant 
related to the strength of buoyancy, the two-dimensional 
boundary-type momentum conservation equation in 
including buoyancy is written as  
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Although a flow in a tube is treated here, the equation 
was written in Cartesian coordinate, under an assumption 
of thin boundary layer. 

The solution to Eq. (6) under boundary condition, ߬ ൌ
߬௪ at ݕ ൌ 0 is 
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The parameter ߣ in Eq. (7) was introduced to account for 
the variation of properties across the viscous sublayer 
and buffer layer, and will be treated as a function of 
buoyancy. The hat (  ) over the density and viscosity in 
Eq. (7) implies that those variables were average over the 
range 0  ାݕ  ߜ . When we use the definitions of 
Grashof number ݎܩ ൌ ߩሺߩ െ ොሻ݃݀ଷߩ ߤ

ଶ⁄ , the skin 
friction coefficient ܥ ൌ 2߬௪ ݑߩ

ଶ⁄  and the Blasius 
correlation ܥ ൌ ଵܴ݁ܭ

ି.ଶହ  with ܭଵ ൌ 0.079 , the term 
in front of the tall parenthesis on the right-hand side of 
Eq. (7) can be straightforwardly rewritten as a 
combination of dimensionless parameters as, 
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(8)

Noting ߩොݒ௪ߜ௧ ⁄ߤ̂ ൌ ௧ߜ௪ାݒ
ା and that ݒ௪ is of order of the 

local value of ሺߩ െ ߤሻ݃ߩ ⁄߬ߩ , Eq. (7) can be written 
a further simplified form 
߬ఋ
߬௪

ൌ ߣ െ ሺߣ െ 1ሻ݁ఋ
శ
ൌ ଵ݂ (9)

Eq. (9) represents shear stress at the buffer layer in the 
absence of velocity overshoot (in other words M-shape 
velocity profile). 

Since we know from Eq. (9) that only independent 
variable is ߜܤ௧

ା it should not be unreasonable to assume 

that ߣ  also depends on ߜܤ௧
ା . The function ߣ  shows 

asymptotic behaviours in the two extremes: the forced 
convection limit ߜܤ௧

ା ൌ 0; and the boundary between 
mixed and natural convection ߜܤ௧

ା ൌ ௧ߜ∗ܤ
ା . After 

conducting an extensive numerical trial and error process 
against the experimental data, the constants a, b, c and d 
were determined and the following dependences of ߣ on 
௧ߜܤ

ା were developed. 

ைమߣ ൌ 1  2 ∙ ቈ1  tanhቆ
௧ߜܤ

ା െ 0.2
0.1

ቇ	 (10)

௪௧ߣ ൌ 1  4 ∙ ቈ1  tanhቆ
௧ߜܤ

ା െ 0.2
0.1

ቇ	 (11)

 
2.2.2 With velocity overshoot 
 

When there appears a velocity overshoot, things 
become totally different, since the core flow (enclosed by 
the locus of the overshoot) will move forward with no or 
negligible interaction with the wall layer (the layer 
between the locus of the overshoot (wall layer) and the 
wall) as noted earlier by Hall [ 8 ]. In this case the 
convection terms was assumed to be negligibly small and 
the shear stress depends only on buoyancy. The 
governing equation simplifies to  

݀߬
ݕ݀

ൌ െሺߩ െ ሻ݃ߩ (12)

By integrating Eq. (12) over the range ߜ௧,  ݕ   ௧ weߜ
obtain  
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From DNS data [9] and numerical experiment ߜ௧,
ା ௧ߜ

ା⁄  
was estimated as a constant of 0.4. Then Eq. (13) 
becomes 

ห߬ఋห

߬௪
ൌ ௧ߜܤ0.4

ା ൌ ଶ݂ (14)

Eqs. (9) and (14) describes the shear stress at the buffer 
layer in the case of without and with velocity overshoot, 
respectively, and are shown in  
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Figure 2. Graphical representation of Eqs. (9) and (14) 
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2.3 Shear stress as a function of damping length, ܣା 
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2.3.1 Without velocity overshoot 
 

In Cebeci’s analysis [7] the damping length ratio, 

ାܣ ܣ
ା⁄ , was proportional to ൫߬ఋ ߬௪⁄ ൯

ିଵ/ଶ
, but the 

numerical works performed by the authors indicated that 

ାܣ ܣ
ା⁄ , was proportional to ൫߬ఋ ߬௪⁄ ൯

ଵ/ଶ
. The reason for 

this discrepancy might be explained by the fact that the 
shear stress in our case is associated with a negative ݒ௪ା 
(suction at the wall) instead of positive ݒ௪ା  in the 
Cebeci’s analysis. In the absence of a pressure gradient 
߬ఋ ߬௪⁄  exponentially decreases with buoyancy strength 
௧ߜܤ

ା as can be seen in Figure 2, before the appearance of 
velocity overshoot or natural convection picks up. 
Finally the relation between the damping length and the 
shear stress at the buffer layer is expressed as follows. 

ାܣ

ܣ
ା ൌ ൬

߬ఋ
߬௪
൰
ଵ/ଶ

	 (15)

 
2.3.2 With velocity overshoot 

 
As discussed in the earlier section, once a velocity peak 
appears, the two flow fields separated from each other by 
the peak no longer depend on each other. Therefore, Eq. 
(15) is no longer valid when a velocity overshoot appears 
within the range of 0  ݕ  ௧ߜ . Recalling 70 as the 
typical value of ܣା under no buoyancy, and the value of 
ାݕ  at the edge of the turbulent boundary layer being 
within the range of 200 – 300 , it is reasonable to assume 
the value of ܣା	to be 30% of the value of ݕା at ߲ݑ ⁄ݕ߲ ൌ
 .ା, [10] resulting in the following simple equationݕ ,0
However, the value of 30% would asymptotically 
converge to 100% as ݕା  approaches zero. Thus, the 
following equation for ܣା  in this flow regime is 
introduced. 

ାܣ ൌ γݕା	 (16)

The function γ take values that change between 0.3 and 
1.0 in a continuous and gradual manner. The value of ܣା 
should be confined within the range of 5 ൏ ାܣ ൏ 70 as 
long as the Myong-Kasagi model is used. Noting that an 
asymptotic behaviour can be best described by a 
hyperbolic function, the following equation for γ  is 
introduced. 

γ ൌ 0.3  0.35 ቈ1  tanhቆ
100 െ ାݕ

50
ቇ	 (17)

The constants 50 and 100 in Eq. (17) were tuned to the 
KAERI’s experimental data obtained with CO2 as a 
medium, and might be different for other mediums. Eq. 
(17) was formulated such that it results in ܣା ൌ  ା whenݕ
ାܣ ା is far smaller than 70 andݕ ൌ  ା is farݕ ା whenݕ0.3
greater than 70. 

Table 1 summarizes the proposed procedure for 
determining ܣା	. 

Table 1 Summary of procedure for determining ܣା 

Condition ܣା 

௧ߜܤ
ା ൏ ௧ߜ∗ܤ

ା ܯinimum	of	ቀܣା ଵ݂
ଵ/ଶ, γݕାቁ 

௧ߜܤ
ା  ௧ߜ∗ܤ

ା ܯinimum	of	ቀܣା ଶ݂
ଵ/ଶ, γݕାቁ 

 ߜା ൌ 30 for ݕା  ାߜ 30 ൌ ା for 11.8ݕ ൏ ାݕ ൏ 30 
and ߜା ൌ 11.8 for ݕା  11.8, 

 ߜ௧
ା ൌ ାߜ ⁄തതത.ସݎܲ , γ : Eq. (17) 

 ܣା is bounded by 5  ାܣ  70 
 ߜ∗ܤ௧

ା ൌ 0.2215 for γ ൌ 3. 
 

4. Results 
 
The numerical method are described in [11] and will 

not be repeated.  
The results of numerical simulations are presented for 

the two cases summarized in Table 2. 
 

Table 2. Flow conditions at the inlet for the cases studied 
(all upward flow) 

Cases Fluid
P 

(MPa)
G 

(kg/m2s) 
q 

(kW/m2)
d 

mm

Case 1 [12] Water 24.5 380 410 10.4

Case 3 [13] CO2 7.75 200 38 4.57

 
Figure 3 shows the axial distribution of ௪ܶ for Case 1. 

The introduction of both ܣା  and ܲݎ௧ି௩  into the 
numerical simulation evidently resulted in extremely 
good agreement with the experimental data. The 
temperature peak was quite accurately captured with the 
right value at the right location. The numerical results 
demonstrated the appropriateness of functional 
dependence of ܣା on the buoyancy parameter, ߜܤ௧

ା. 
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Figure 3  Case 1. (a) Distribution of the wall temperature 
along the tube 

 
As is evident in Figure 4, the introduction of ܣା 

greatly improved the numerical performance in Case 2, 
showing a capability of capturing the two temperature 
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peaks at the correct positions with striking precision. The 
conventional method (dash dot) largely overestimates the 
experimental data. The introduction of ܲݎ௧ି௩  only 
slightly improved, but still show overestimation.  
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Figure 4  Case 3. (a) Distribution of the wall temperature 
along the tube. 

 
3. Conclusions 

 
The damping length, ܣା, is believed to be an 

important parameter in the turbulent boundary layer 
controlling the behavior of the buffer layer, where most 
turbulence is generated. Under the assumption that the 
value of ܣା will change in accordance with the strength 
of buoyancy, a functional relation between	ܣା and the 
shear stress at the edge of the thermal boundary 
layer,	߬ఋ, was established by directly integrating the 
momentum equation under some appropriate 
assumptions. Incorporating 	ܣା as a function of ߬ఋ, as 
well as ܲݎ௧ି௩   previously proposed by Bae [4] in the 
RANS type numerical calculations of fluid flows under 
strong property variations accompanying consequential 
heat transfer deterioration, resulted in excellent 
agreement with the experimental data. In particular, the 
temperature peaks and plateaus were also quite 
accurately captured.  

The authors hope the method proposed in this paper 
will provide the research groups working in this field 
with a reasonable numerical tool for RANS type 
calculations. 
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