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1. Introduction 

 
If accidents happen in nuclear power plants, plant 

operators will try to find out abnormal plant states by 

observing the temporal trends of some important 

parameters. However, operators are provided with a part 

of information and also, there is not enough time to 

analyze the information. So, it is very difficult for 

operators to predict the progression of the events by 

staring at temporal trends of some parameters on large 

display panels in the main control room. In addition, 

during a series of accident progression, the operators 

will face hundreds of instrument readings that show 

some typical patterns of that accident.  

In case of the accidents that happens in a nuclear 

power plants (NPPs), it is very important to identify its 

accidents for the operator. Therefore, in order to 

effectively manage the accidents, the initial short time 

trends of major parameters have to be observed and 

NPP accidents have to accurately be identified to 

provide its information to operators and technicians. 

In this regard, the objective of this study is to identify 

the accidents when the accidents happen in NPPs. In 

this study, we applied the support vector classification 

(SVC) model to classify the initiating events of critical 

accidents such as loss of coolant accidents (LOCA), 

total loss of feedwater (TLOFW), station blackout 

(SBO), and steam generator tube rupture (SGTR). Input 

variables were used as the initial integral value of the 

signal measured in the reactor coolant system (RCS), 

steam generator, and containment vessel after reactor 

trip. The proposed SVC model is verified by using the 

simulation data of the modular accident analysis 

program (MAAP4) code [1]. 

 

 

2. Methods and Results 

 

2.1 Support Vector Machines (SVM) 

 

Support vector machines (SVM) is based on 

statistical learning theory that uses the obtained 

probability distribution in the process that targets a 

learning diagnosis of category information and training 

data to estimate the decision making function. SVM is a 

kind of the empirical data modeling method that is 

divided into an empirical risk minimization (ERM) 

method and a structural risk minimization (SRM) 

method. ERM minimizes learning error by using the 

learning diagnosis. SRM selects the decision making 

function that minimizes the empirical risk for the 

subgroup after subdividing a whole group into 

subgroups. SVM can be applied to classification and 

regression problems [2]. 

 

2.2 Support Vector Classification (SVC) 

 

A support vector classification (SVC) model is used 

as a classifier to classify the data of a non-linear form. It 

makes the decision principle to classify a data vector 

into a binary form such as 
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y y R y   x x x . Optimal 

separating hyperplane maximizes the distance between 

the boundary surface and the closest data without an 

error. Fig. 1 shows the optimal separating hyperplane. 

Fig. 2 shows an example of a binary classification by 

SVC model. A variety of decision boundary exists if 

there is a dataset as shown in the figure. Fig. 2 shows 

the most stable and balanced decision boundary. There 

is a certain distance between the decision boundary and 

the actual dataset and this gap is called margin. 

A boundary surface in the SVC is expressed as 

0b  w x . The boundary surface to accurately 

classify the data is a boundary surface that minimizes 

Eq. (1) [3]. 
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Lagrange function should be minimized with respect 

to w  and b , and should be maximized with respect to 

0  . Eq. (3) shows the minimum with respect to w  

and b . Eq. (4) shows the maximum with respect to 

0  . 
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Subject to the constraints 
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Minimizing with respect to w  and b , and 

maximizing with respect to 0  , an optimal 

separating hyperplane can be expressed as Eq. (5). 
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T

w w  should be minimized to maximize the distance 

between the two parallel dotted lines shown in Fig. 2. 

The generalized optimal separating hyperplane is 

determined by minimizing the following functional as 

follows: 
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The non-negative parameter 
i  in the second term of 

Eq. (6) was used to deal with the problems associated 

with a misclassification due to the noise on the data. In 

Fig. 3, the filled triangle and rectangle indicate the data 

with measurement noise. The parameter i  is a measure 

of the misclassification. 

In the case where the linear boundary in the input 

spaces cannot separate the two classes properly, it is 

possible to create a hyperplane that allows a linear 

separation in higher dimensional feature space. The 

SVC models carry out this task by implicitly mapping 

the training data into higher dimensional feature space. 

A hyperplane is then constructed in this feature space 

that bisects the two categories and maximizes the 

margin of separation between itself and those points 

lying closest to it. Specifically, the primal space is 

transformed into high dimensional feature space by a 

nonlinear map ( )φ x , as shown in Fig. 4. The function, 

( )i x , is called the feature that is nonlinearly mapped 

from the input space x , and  1 2

T

N  φ . 

Fig. 4 shows the hyperplane established in high 

dimensional feature space and the nonlinear 

classification is replaced by a linear classification 

problem in high dimensional feature space. The 

parameter,  , in Eq. (6) controls the trade-off between 

the complexity of the SVC model and the number of 

non-separable points, and is referred to as a 

regularization parameter. The Lagrange multiplier 

technique and standard quadratic optimization technique 

can be used to solve the vector w  and the bias b , and 

the solution to the convex optimization problem can be 

expressed as follows: 

( ) sgn ( , )i i i

i SVs

f x y K b


 
  

 
 x x  (7) 

where 

 

2

*

1

( ) ( )
( , ) exp

2

1
( , ) ( , )

2

( , ) ( ) ( )

T

i i

i

N

i i i r i s

i

T

i i

K

b y K K

K






 
 

  



 
 
 



x x x x
x x

x x x x

x x φ x φ x  

 

2.3 Application to NPP accident identification 

 

SVC model is used as a classifier for classifying the 

data of the non-linear form. Input variable of the SVC 

model is composed of the signal measured at RCS, 

steam generator, and containment vessel. After reactor 

trip, major accidents is classified by using a very short 

time integral value of the measured signal. 

The data was obtained using MAAP4 code. Input 

variables of SVC model are integral value of the 

simulated sensor signals 13. The data were divided into 

training data and test data. The training data consist of 

190 hot-leg LOCAs, 190 cold-leg LOCAs, 190 SGTR, 

2 SBO, and 2 TLOFW. The test data consist of 10 hot-

leg LOCAs, 10 cold-leg LOCAs, 10 SGTR, 1 SBO, and 

1 TLOFW. 

In this paper, since the SVC model is a binary 

classification model, three SVC models were used to 

classify five types of events according to NPP accidents. 

The three SVC models were trained so that they 

categorize the hot-leg LOCA, the cold-leg LOCA, the 

SGTR, the SBO, and the TLOFW as (1, 1, 1), (1, 1, -1), 

(1, -1, 1), (1, -1, -1), and (-1, 1, 1) respectively as shown 

in Table I.  

NPP accidents are identified by the trained SVC 

model as shown in Fig. 5. As a result, perfectly 

identifying accidents without errors is shown in table 2 

irrespective of the integral time. That is, perfect 

identification was accomplished even though pretty 

short time measurement values were used. 

Since the aforementioned results were generated from 

simulated data, it was assumed that there were no 

measurement errors in the input signals. Now, three 

types of measurement errors are assumed to determine 

the effect of the measurement error on the proposed 

algorithm: +5% error, -5% error, and random error. 

Table 3 shows each measurement error. The +5% error 

option assumes a 5% over-measurement for all input 

signals. The random error option assumes that the 

measurement errors of the input signals have a normal 
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distribution with zero mean and 5% standard deviation. 

The SVC models classify NPP accidents with a few 

misclassification despite these measurement errors as 

shown in table 4. 

Table 5 shows the results of the case when the safety 

system works. Each of the safety systems was operated 

with delay.  
 

Table I: Event identification using the SVC model 

SVC 

Mode 

Hot-

leg 

LOCA 

Cold-

leg 

LOCA 

SGTR SBO TLOFW 

SVC1 1 1 1 1 -1 

SVC2 1 1 -1 -1 1 

SVC3 1 -1 1 -1 1 

 

Table II: Transient identification 

Integrating Time 
Misclassification 

No. 

Don’t Know 

Classification No. 

3 0 0 

5 0 0 

10 0 0 

20 0 0 

30 0 0 

40 0 0 

50 0 0 

60 0 0 

90 0 0 

Table III: Assuming measurement errors 

Signals 
Random 

errors (%) 

5% Under 

error 

5% Over 

error 

Core exit 

temperature 
-1.30 5 -5 

Containment 

pressure 
-5.00 5 -5 

Containment 

temperature 
0.38 5 -5 

Pressurizer 

pressure 
0.86 5 -5 

Pressurizer water 

level 
-3.44 5 -5 

Sump water level 3.58 5 -5 

Reactor core 

water level 
3.57 5 -5 

Broken side S/G 

pressure 
-0.11 5 -5 

Broken side S/G 

temperature 
0.98 5 -5 

Broken side S/G 

water level 
0.52 5 -5 

Unbroken side 

S/G pressure 
-0.56 5 -5 

Unbroken side 

S/G temperature 
2.18 5 -5 

Unbroken side 

S/G water level 
-1.77 5 -5 

 

Table IV: Transient identification under measurement 

errors 

Integrating 

Time 

Misclassification No. 
Don’t Know 

Classification No. 

random 5% -5% random 5% -5% 

3 0 0 0 0 0 0 

5 0 1 1 0 0 0 

10 0 0 0 0 0 0 

20 0 0 0 0 0 0 

30 0 0 0 0 0 0 

40 0 0 0 0 0 0 

50 0 0 1 0 0 0 

60 0 0 1 0 0 0 

90 0 0 0 0 0 0 

 

Table V: Transient identification (safety system actuation)  

Integrating 

Time 
Misclassification No. 

Don’t Know 

Classification No. 

3 1 0 

5 5 0 

10 6 0 

20 5 0 

30 5 0 

40 3 0 

50 2 0 

60 0 2 

90 2 1 

 

Optimal separating 

hyperplane

A
B

C

 
 

Fig. 1. Optimal separating hyperplane  
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Fig. 2. An example of a binary classification using the SVC 

model 
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Fig. 3. An example of a misclassification due to noise in the 

measured data 
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Fig. 4. An example of a misclassification due to noise in the 

measured data 
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Fig. 5. Event identification using the SVC model 

 

3. Conclusions 

 

In this study, the proposed SVC model is verified by 

using the simulation data of the modular accident 

analysis program (MAAP4) code. We used an initial 

integral value of the simulated sensor signals to identify 

the NPP accidents. The training data was used to train 

the SVC model. And, the trained model was confirmed 

using the test data. As a result, it was known that it can 

accurately classify five events. Since the proposed 

algorithm uses initial data after reactor trip although the 

accident simulation data are deficient and the initial 

simulation data was known to be accurate, it can be 

effectively used in an actual NPPs as well. 
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