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1. Introduction 
 

The Fukushima Daiichi nuclear disaster can be 
summarized as an accident caused by extreme natural 
disasters that resulted in the reactor core melt-down and 
a massive release of radioactive. The disasters brought 
the long-term Station Black-out (SBO). For these 
lessons of the Fukushima nuclear accident, the US and, 
European governments, IAEA and other regulatory 
agencies around the world have recommended follow-
up measures to build and develop a strategy to cope 
with the Extended Loss of All AC Power (ELAP) 

The purpose of this study is to identify the behavior 
and response capacity of the CANDU 6 plant during 
ELAP such as the one occurred in the Fukushima 
accident. The analysis was performed with CATHENA, 
which is an Industry Standard Toolset (IST) to simulate 
thermal-hydraulic phenomena in pressurized heavy 
water reactor. 

 
2. Modeling for Analysis 

 
CATHENA code has been developed for best-

estimate transient simulation of CANDU plants. It is a 
one-dimensional, two-fluid thermal-hydraulic 
simulation code designed to analyze two-phase flow 
and heat transfer in the plant. It has been used for the 
analysis and simulation of the consequences of transient 
and accident scenarios in CANDU reactors. CATHENA 
provides high flexibility in modeling thermal-hydraulic 
systems [1]. 

Initial reactor power, taking into account the 
uncertainty, is assumed to be 103%. A system model is 
set up with two circuits, and includes coolant system, 
steam and feed water system, and an emergency core 
cooling system (ECCS). The four core paths in the 
system model consist of each of the seven multi-round 
channel groups. The nodalization model is shown in Fig. 
1. The core model used in the analysis is an aged core 
model. This core model reflects the pressure tube creep 
in each channel group. 

 
3. Analysis Assumption and Results  

 
3.1 No Operator Action (case 1) 
3.1.1 Scenario and Assumption 

Scenario case 1 assumed no operator intervention 
during ELAP. ELAP in CANDU 6 plant means loss of 
offsite power, standby diesel generators and emergency 
diesel generators. Only Class 1 & 2 Power is available. 

 

 

Fig.1. Nodalization Model of CANDU 6 NPP 
 
In this situation, most of the safety systems are 

unavailable, and the only available system is shutdown 
system (SDS), main steam safety valve (MSSV), and 
liquid relief valve (LRV).  

The heat transport pump seal leak is not assumed. 
The integrity test result for CE type RCP Seals shows 
that there is no leak up to 50 hours [2]. Wolsong unit 1 
heat transport pump seals are the same type. If there is 
no operator intervention, the pressure tube will be 
damaged before the coolant pump seal leaks.  

 
3.1.2 Results 

Reactor is tripped by a later trip signal of the first and 
second trip system. As shown in Fig. 2, the inlet and 
outlet header pressure is slightly raised and reduced, 
and then maintained constantly. The pressure is raised 
again after approximately 4,000 seconds, which is 1,000 
seconds faster than the steam generator (SG) depletion.  
And the pressure is maintained near the set point of the 
LRV opening pressure. 

In the early stage of the accident, inlet header 
temperature increases and outlet header temperature 
decreases as shown in Figure 2. The temperature of 
headers also rises as the pressure trend at the time. And 
it maintains the saturation temperature. It means the 
loss of SG cooling capability from that time. 

The cladding temperature after the loss of the cooling 
capacity increases and exceeds the integrity reference 
value of 800℃ at about 6,700 seconds as shown in Fig. 
3. Also the pressure tube temperature exceeds 600℃ 
and the tube is likely damaged.  

 
3.2 Operator Action (case 2) 
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3.2.1 Scenario and Assumption 

Scenario case 2 assumes operator intervention during 
ELAP. Accident progression up to 30 minutes is the 
same with case 1. The actions and response measures in 
case of operator action are the following: 

- MSSV opening within 30 minutes after the 
accident 

- Water supplying from dousing tank to SG by 
gravity 

- Power supplying by mobile generator 
- Emergency water supplying to SG with EWS 

pump 
 

 
Fig.2. In/Outlet Header Pressure (case 1) 

 
Fig.3. In/Outlet Header Temperature (case 1) 

  
Fig.4. Fuel cladding temperature (case 1) 

 
3.2.2 Results 

As shown in Fig. 5, the inlet and outlet header 
pressure is steadily reduced after MSSV opening. And 
the dousing tank water is feeding to SG at 1 hour; the 
pressure is decreased to 0.3MPa. The inlet/outlet header 

temperatures are also decreased as shown in Figure 6. 
And it maintains between 80 and 120℃ by SG cooling. 
The fuel cladding temperature increases to 400℃ 
partially, but does not exceeds the reference 
temperature of 800℃, which could damage the fuel 
cladding.  

It shows that the core cooling, integrity of cladding 
and pressure tube can be maintained through the above 
response measures during ELAP condition. 

 

 
Fig.5. In/Outlet Header Pressure (case 2) 

 
Fig.6. In/Outlet Header Temperature (case 2) 

 
 

4. Conclusions 
 

The analysis was performed to estimate behavior and 
response of CANDU 6 plant during ELAP condition 
such as the one occurred during the Fukushima accident. 
Without the operator action during ELAP, the fuel 
cladding and pressure tubes are damaged within 2 hours. 
However, if the operator acts appropriately with several 
available measures, the plant cooling could be 
maintained without core damage.  

These results would be helpful for developing a 
strategy to cope with ELAP situation. 
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