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1. Introduction 

 

While the continuous-energy neutron transport 

equation is derived straightforwardly and rigorously, the 

multigroup transport equation currently in use involves 

several approximations during its derivation [1,2]. 

In this paper, we propose a new way of deriving 

multigroup transport equation that maintains angle-

independence in the total cross section and homogeneity 

in the material region (originally each material region is 

usually homogeneous). As a byproduct, only isotropic 

scattering term remains, which also relieves the 

computational burden significantly. 

In this Homogeneity and Isotropy REstoration 

(HIRE) theory, we introduce a discontinuity factor in 

the form of partial current discontinuity factor (PCDF) 

at material interface. The theory is tested on a simple 

problem – a typical pin cell in a reactor core – with 

expected results, providing a proof of the principle. 

 

2. Methodology 

 

The continuous-energy neutron transport equation 

can be rigorously derived as: 
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To obtain corresponding multigroup transport 

equations, we integrate Eq. (1) over an energy interval 

1g gE E E    as: 
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(2) 

where the standard notations are used. 

Note that, in Eq. (2), the group total cross section in 

the left hand side becomes angular dependent, because 
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This causes inconvenience in all computational 

methods known today. This is an unresolved problem 

and there have been several attempts [3-5] but with 

limited success. 

In this paper, we describe homogeneity and isotropy 

restoration (HIRE) theory that leads to material region-

averaged, angle-independent and group condensed total 

collision cross section, in contrast to Eq. (3). 

For the sake of simplicity, let us consider a typical 

two-dimensional UO2 pin-cell problem shown in Fig. 1. 

The continuous-energy Monte Carlo (MC) calculation is 

performed to solve Eq. (1) with albedo boundary 

conditions given as : 
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where kn  is the outgoing normal direction of surface k. 

 

 
Fig. 1. Configuration of a 2-D UO2 pin-cell problem; k  
denotes the surface with index k. 

 

From the continuous-energy MC calculation, the 

material region-averaged, angle-independent, and group 

condensed cross sections for each material region are 

obtained as: 
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where mV is the volume of the material index m. 

Then, the multigroup transport equation is 

constructed as: 
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with ( , ) ( , ) for  , 0,g k g k kr r r n         and 

albedo direction to     for k = 1 to 4. 

Note in Eq. (9) that only the zeroth-moment 

scattering remained in the scattering term. 

Eq. (9) alone as such cannot preserve the eigenvalue 

and the material region-wise flux distributions of Eq. (1) 

due to discrepancies of the neutron leakages at the 

surfaces. To preserve the neutron leakages, the partial 

current discontinuity factor (PCDF) is introduced to 

each outgoing and incoming direction with respect to 

material m at surface k (k = 5 to 8) as shown in Eqs. 

(10a) and (10b), with an illustration in Fig. 2. 
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where ,g kf   and ,g kf   are PCDF values are obtained as : 
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Fig. 2. Leakage corrections based on the PCDFs at surface k. 

 

Similar PCDFs were considered before [6,7], but for 

different reasons from those of this paper. Ref. [6] 

introduced PCDF in the baffle-reflector homogenization 

in a diffusion nodal method, while Ref. [7] considered 

PCDF in the conventional multigroup transport or SP3 

solution method with homogenization. 

At the beginning, the PCDFs are set as unity and they 

are updated by solving the multigroup transport 

calculation iteratively as in Fig. 3, where l is the PCDF 

iteration index imposed on the multigroup transport 

solution of Eq. (9). 

 

 
Fig. 3. PCDF iteration until the eigenvalue obtained from the 

multigroup transport calculation converges. 

 

To accelerate the convergence of the PCDF iteration, 

the secant method can be applied as: 
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where ,( 1)
,

l
g kf
   values are the accelerated PCDF values. 

 

3. Numerical Results 

 

The geometry of the pin-cell test problem is shown in 

Fig. 1. The pin pitch is 1.26 cm, where the fuel radius is 

0.4095 cm. The fuel is UO2 with 10.2 g/cc, 3.3 w/o 

U235, while the moderator is 1.0 g/cc with 800 ppm 

boron concentration. In this test problem, reflective 

boundary condition is applied to all boundary surfaces. 

Then, we try to reproduce the material region-wise 

continuous-energy MC solution from the one-group MC 

calculation (for this calculation in the 2nd box in Fig. 3, 

we can use G > 1 and/or deterministic methods) using 

the HIRE theory. 
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The continuous-energy MC calculation is performed 

with 20 inactive cycles, 200 active cycles with 

4,000,000 histories per cycle to generate one-group 

cross section for each material. ref
effk  is obtained as 

1.28384 with the sample standard deviation of 2.0 pcm. 

The one-group MC calculation is performed with 20 

inactive cycles, 200 active cycles with 1,000,000 

histories per cycle. 

Table I shows the one-group cross sections obtained 

by the HIRE theory, while Fig. 4 shows PCDFs for 

surfaces 5 to 8 (as denoted in Fig. 1) as iteration 

proceeds. Although the stochastic errors in net currents 

from the continuous-energy MC calculation cause some 

variations in PCDFs for symmetric surfaces during 

iteration, f  and f   converge to around 1.0056 and 

around 0.9944, respectively, at the end of iteration. Figs. 

5 and 6 show the errors of the eigenvalue and the 

material region-wise flux obtained from the one-group 

MC calculation. After 2 PCDF iterations, the errors are 

significantly reduced. 

 
Table I. One-group cross sections [cm-1] for the pin-cell test 

problem 

 t  0s  f  

Fuel 4.6351E-01 3.8184E-01 1.2487E-01 

Moderator 1.0736E+00 1.0658E+00 0.0000E+00 

 

 
Fig. 4. PCDFs of surfaces 5 to 8 as iteration proceeds; f + and  

f – are PCDFs for the outgoing and incoming partial currents 

with respect to fuel region, respectively. 

 

 
Fig. 5. Error of the eigenvalue from one-group MC 

calculation. 

 

 

 

 

 

 
Fig. 6. Error of the material region-wise flux from one-group 

MC calculation. 

 

4. Conclusions 

 

The homogeneity and isotropy restoration (HIRE) 

theory described in this paper removes the angle 

dependency of the group condensed total cross section 

in the multigroup transport equation. For a pin-cell 

problem with all reflective boundary conditions, the 

method has been successfully tested. It is noted again 

that the multigroup transport equatikon thus derived can 

be solved by a deterministic method well-known in the 

literature or by a simple MC method. 

As an additional remark, the integration volume in 

Eqs. (5) – (8) could be a multi-region volume such as 

the pin cell or the baffle-reflector for homogenization, 

or a sub-region volume such as a ring in a fuel rod for 

rim effect analysis. 
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