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1. Introduction 
 
Due to the increase of various demands and purposes 

that cannot be fulfilled by conventional PWRs, plenty 
of FBRs and SMRs have been widely studied and being 
developed. Since these reactor types have large mean 
free path and small system size compared to 
commercial PWRs, the conventional diffusion 
approximation is not valid anymore for FBR and SMR 
neutronics analysis. Direct transport approach based on 
Monte Carlo (MC), Method of Characteristics (MOC), 
or other sophisticated transport methods can be used to 
achieve fidelity core analysis, but unacceptable 
computational burden is needed especially for core 
transient simulations under various accident situations. 
In order to accomplish accurate and efficient core 
simulation for these reactor types, improved core 
analysis procedure is necessary. 

The simplified Pn (SPn) method [1,2] is one of the 
best solutions. This method expands the neutron 
angular flux using the nth order Legendre polynomial on 
the cosine of the neutron flight angle in computational 
reactor physics. The SPn solution is quite accurate 
compare to the conventional diffusion solution that can 
be obtained by the P1 method. Also, the formulation of 
the SPn equations is similar to that of the diffusion 
equation, so the SPn method is easy to adopt nodal 
methods for efficient core analysis. With this 
background, there have been various studies to apply 
SPn nodal methods with the order of 3 (SP3) [3-6] and 
it has been proved that the SP3 application takes 
significant enhancement on core analysis accuracy 
especially in SMR, FBR, and some cores where large 
spatial flux variation is formed such as MOX loaded 
cores or cores under the ARI condition. 

Most SP3 researches are, however, limited on the 
steady-state analysis. Although there are a few studies 
for SP3 application to core transient analysis [7-9], they 
are available only in rectangular core problems. Since a 
number of SMRs and FBRs use hexagonal fuel 
assemblies, it is worth evaluating the effect of the SP3 
application in hexagonal core transient analysis.  

Triangle-based polynomial expansion nodal (TPEN) 
method [10] is one of the nodal methods applied in 
hexagonal geometry. In this method, each hexagon 
node is split to 6 triangles and the intra-nodal spatial 
flux distribution is expressed as a third order 
polynomial on 2-D space in each triangle. This method 
is implemented in the PARCS [11] and MASTER [12] 

core analysis codes and its effectiveness has been 
already proved.  

In this study, the SP3 method is applied to hexagonal 
core transient simulation with applying the TPEN 
method. In the next section, time-dependent SP3 TPEN 
equations are introduced briefly. The effectiveness of 
the SP3 TPEN method in core transient simulation is 
then evaluated in the simplified VVER440 rod ejection 
benchmark problem [13]. And the significant of this 
work is discussed in the last section.  

 
2. Time-Dependent SP3 TPEN Equations 

 
The governing equations for SP3 core transient 

simulation consist of the time-dependent SP3 equations 
[14] and the precursor balance equation represented as 
follow: 
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where , ( , )m g r t


 and , ( , )m g r t
 

 are respective even and 

odd moment of angular flux and m is the order of 
moment. 

Eq. (1) can be replaced to radial 2-D and axial 1-D 
SP3 equations by the transverse integration on 
respective z-direction and x-y plane. The TPEN method 
is applied to the 2-D equation for hexagonal geometry 
and the 1-D equation is solved by any nodal methods 
applied in rectangular core analysis. Also, any temporal 
discretization techniques are required to solve the time-
dependent equations numerically. Temporal discretized 
transverse integrated radial 2-D SP3 equations are 
expressed as follow: 
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where 2 ( , )r x y


 and i is time index for it t . The 

steady-state source ,ss i
gq , transverse leakage source ,

,
tl i
m gq , 

and transient specific source ,
,

ts i
m gq  are defined as follow: 
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The time-derivative of odd moments in the second 
and fourth equations of Eq. (3) is generally neglected 
by assuming that they are much smaller than spatial 
variation of even moments [8,9]. 
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Then Eq. (3) can be expressed to diffusion-like 
equations as follow: 
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The two-dimensional intra-nodal SP3 TPEN 
solutions in each triangle node are defined as follow: 
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where p and w are coordinates defined in each node as 
noted in Fig. 1.  

 
Fig. 1. Coordinates in a triangle node 
 
The 9 coefficients for each moment in Eq. (6) are 
determined by the following 9 constraints. 

- Node-average moment (1) 
- x- and y-weighted node-average moments (2) 
- Corner moments (3) 
- Surface-average moments (3) 

Intra-nodal solutions in 6 triangle nodes contained in a 
hexagon node are determined simultaneously by 
solving coupled equations constructed by above 9 
constraints. Detail description of the TPEN method in 
SP3 formulation can be found in elsewhere [6]. 
 

3. Numerical Result 
 

The time-dependent SP3 TPEN methods are 
implemented in the RENUS core simulator [15] 
developed in Seoul National University. Its 
effectiveness is evaluated in the VVER440 rod ejection 
benchmark problem whose ID is AER-DYN-003. 
Detail benchmark specification can be found in 
elsewhere [13] and the zero-incoming boundary 
condition is assumed in this work for simplicity.  

Fig. 2 represents the core power behaviors of this 
problem. The diffusion (P1) TPEN solutions obtained 
by the PARCS and RENUS codes are also provided to 
confirm the effectiveness of the SP3 application. All 
computing options in RENUS and PARCS calculations 
are same except the temporal discretization method that 
the RENUS solution is obtained by the fifth BDF 
method [16] whereas the PARCS uses Crank-Nicholson 
with exponential transformation [11]. 1 ms small time 
step size is used to remove the effect come from the use 
of different temporal discretization methods.  
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Fig. 2. Core power behavior in the VVER440 rod ejection 
benchmark 
 
As shown in Fig. 2, different power behaviors are 
observed in the P1 and SP3 applications. In general, 
core power behavior in rod ejection accidents is 
determined by the ejected rod worth. Table I represents 
the effective multiplication factors in rod-in and rod-out 
states and estimated ejected rod worth. Estimated rod 
worth is calculated as follow: 

 
_ _

1 1
rod

rod in rod outk k
     (7) 

and about 130 pcm reactivity difference is observed in 
the P1 and SP3 applications.   
 

Table I: k-eff in rod-in and rod-out states and estimated rod 
worth in the VVER440 benchmark problem 

  
k-eff  

(Rod-in) 
k-eff  

(Rod-out) 
Rod Worth1)

(pcm) 
P1 (PARCS) 0.98931 1.00072 1152.5 
P1 (RENUS) 0.98926 1.00075 1160.6 

SP3 (RENUS) 0.98092 0.99092 1028.8 

 
In order to verify that SP3 solution is accurate than 

P1 solution, P1, SP3, and Monte Carlos (MC) steady-
state solutions are compared in a simplified 2-D 
VVER440 problem whose core configuration is the 
middle plane of the original 3-D problem. Two cases 
are simulated that total 6 periphery control rods are out 
in ‘Case 1’ whereas ‘Case 2’ simulates that 1 center 
control rod is out in the rod-out state. The MC solution 
is obtained by the McCARD transport code [17] using 
100,000 particles per cycle with 50 inactive and 450 
active cycles. Table II shows k-eff in the rod-in and 
rod-out states and estimated rod worth. Values in 
parenthesis are reactivity error and they are given as the 
pcm unit. 

 
 
 
 
 
 
 

Table II: k-eff in the rod-in and rod-out states and estimated 
rod worth in the simplified 2-D VVER440 problem 

  
k-eff  

(Rod-in) 
k-eff  

(Rod-out) 
Rod Worth 

(pcm) 

Case 
1 

MC 0.98787 1.01451 2658.1 

P1 
0.98491  
(-304.6) 

1.01309  
(-138.3) 

2824.5 
(166.3) 

SP3
0.98711  
(-77.7) 

1.01385  
(-63.9) 

2672.0 
(13.8) 

Case 
2 

MC 0.98787 0.99922 1149.8 

P1 
0.98491  
(-304.6) 

0.99782  
(-140.0) 

1314.4 
(164.6) 

SP3
0.98711  
(-77.7) 

0.99887  
(-34.6) 

1193.0 (43.1)

 
In the VVER440 benchmark, the control rod has quite 
large thermal absorption XS, so huge spatial flux 
variation is formulated by control rod insertion. Thus it 
leads to significant inaccuracy on the P1 solution in the 
rod-in state. On the other hand, error of P1 solution 
decreases in the rod-out state because spatial flux 
becomes smooth. The rod worth is estimated by the 
difference of reactivity in rod-in and rod-out states, so 
large rod worth error occurs in the P1 method. On the 
other hands, SP3 produces reliable solutions in not only 
the rod-out state but the difficult rod-in state. Thus 
accurate rod worth can be estimated by the SP3 
application.  
 

4. Conclusion 
 

In this work, the time-dependent SP3 TPEN method 
was developed to attain accurate hexagonal core 
transient solutions. In the SP3 TPEN approach, each 
hexagon node was split to 6 triangle nodes and the 
intra-nodal 2-D SP3 solutions were expressed as a third 
order polynomial in each triangle node.  

The effectiveness of the SP3 TPEN method in 
hexagonal core transient analysis was verified in the 
VVER440 rod ejection benchmark problem. 
Considerable difference was observed in core power 
behaviors and estimated rod worth obtained by the P1 
and SP3 methods. The superiority of the SP3 method 
was proved by comparing P1, SP3, and MC solutions 
that k-eff and estimated rod worth obtained by SP3 was 
much closer to the MC reference solutions.  

Until now, core simulations have been conventionally 
performed by the P1 method. However, it renders 
inaccurate solutions especially for SMRs and FBRs 
whose geometry is generally hexagonal. Thus the SP3 
TPEN method developed here can be used as the 
alternative methods that replace the conventional P1 
solvers for accurate hexagonal core simulation.  
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