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1. Introduction 

 
The many nuclear power plants (NPPs) have been 

operated globally because the demand of energy 

increases continuously. However, the most of the NPPs 

in operation were operated for a long time. The long-

term aged NPPs can induce an accident such as loss of 

coolant accident (LOCA), because the pipes in plants 

are weak. The NPPs have the emergency core cooling 

system (ECCS) such as a safety injection system. The 

ECCS may not function properly in case of the small 

break size due to a slight change of pressure in the pipe. 

If the coolant is not supplied by ECCS, the reactor core 

will melt. Therefore, the meltdown of reactor core have 

to be prevented by appropriate accident management 

through the prediction of LOCA break size in advance. 

This study presents the prediction of LOCA break size 

using cascaded fuzzy neural network (CFNN). The 

CFNN model repeatedly applies FNN modules that are 

serially connected. The CFNN model is a data-based 

method that requires data for its development and 

verification. The data were obtained by numerically 

simulating severe accident scenarios of the optimized 

power reactor (OPR1000) using MAAP code, because 

real severe accident data cannot be obtained from actual 

NPP accidents [1]. 

 

2. CFNN method 

 

2.1 CFNN Model 

 

The CFNN model predicts the target value through 

the process of repeatedly adding FNN modules. The 

FNN module is a combination of a fuzzy inference 

system (FIS) and neuronal training. The conditional rule 

of FIS is applied by a fuzzy if–then rule that consists of 

an antecedent and a consequence. A general drawing of 

the CFNN model is shown in Fig. 1 [2]. The present 

study uses the Takagi-Sugeno-type FIS because it does 

not need defuzzifier in the output terminal, which is a 

real value [3]. 

1st stage

FNN

2nd stage

FNN

thG stage

FNN

mx

1ŷ
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Fig. 1. CFNN model. 
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where ( )jx k  is FIS input value, 
ijA  is fuzzy set for the 

thi  fuzzy rule and the thj  input variable, ˆ ( )iy k  is the 

thi  fuzzy rule output, m  is the number of input 

variables, n  is the number of fuzzy rules, and 
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Fig. 2. First stage of the FNN module 

 

The first stage of the FNN module is shown in Fig. 2. 

The first layer indicates the input nodes that transmit the 

input values to the next layer. Each output from the first 

layer is transmitted to the input of the membership 

function. The second layer indicates the fuzzification 

layer that calculates the membership function using the 

Gaussian function using Eq. (2). The third layer 

indicates a product operator on the membership 

functions that is expressed as Eq. (3). The fourth layer 

indicates normalization using Eq. (4). The fifth layer 

generates the output of each fuzzy if-then rule. Finally, 

the sixth layer indicates an aggregation of all the fuzzy 

if-then rules and is expressed as Eq. (5). The second-

stage FNN module uses the initial input variables and 

the output of the first-stage FNN module as the input 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 12-13, 2016 

 

 
variables. This process is repeated G -times to find the 

optimum output value.  
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where  

ijc : center position of the peak 

ij : width of the bell shape 
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2.2 Data Optimization 

 

To predict the LOCA break size using the CFNN 

model, the CFNN model needs the numerical simulation 

data for severe accidents. The data were obtained by 

simulating the MAAP code for the LOCA scenarios of 

OPR1000. The simulation comprised 600 cases of 

severe accident scenarios. The data consisted of 200 

hot-leg LOCAs, 200 cold-leg LOCAs, and 200 steam 

generator tube ruptures (SGTRs). The break positions 

were divided into hot-leg, cold-leg and SGT. Table I 

shows the input variables for prediction of the LOCA 

break size. 

 

Table I: Input variables 

 Input variables 

Hot-leg  pressurizer pressure, pressurizer water 

level, pressure in the pipe, temperature of 

gas in the pipe 
Cold-leg 

SGTR 

water level in the broken side S/G, 

temperature in the unbroken side S/G, 

pressurizer pressure, pressurizer water level  

 

The CFNN model is optimized by a combined 

method using the specified training data. The antecedent 

parameters in the membership function are optimized by 

a genetic algorithm. The consequent parameters are 

optimized by the least square method. In the genetic 

algorithm, the following fitness function is proposed to 

minimize the maximum and root-mean-square (RMS) 

errors: 
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t
N  : number of training data 

( )y k  : actual output value 

ˆ ( )y k  : predicted value by FNN 

 

The consequent parameter q  in Eq. (5) is optimized 

by the least square method and is computed to minimize 

the objective function represented by the squared error 

between the measured value y(k)  and the predicted 

value ˆ ( )y k . 

 

   
22

1 1

2

ˆ( ) ( ) ( ) ( )

1
ˆ( )

2

t tN N
T

k k

t t

J y k y k y k k
 

   

 

  w q

y y

 (7) 

where  

[ (1) (2) ( )]T

t ty y y Ny  

ˆ ˆ ˆ ˆ[ (1) (2) ( )]Tt ty y y Ny  

 

The solution to minimize the objective function in Eq. 

(7) is expressed as follows: 

 

t ty W q  (8) 

where 

[ (1) (2) ( )]T

t tNW w w w  

 

The parameter vector q  in Eq. (8) is solved from the 

pseudo-inverse function as follows: 

 
1( )T T

t t t t

q W W W y  (9) 

 

The parameter vector q  is computed from a series of 

input data, output data, and their membership function 

values because the matrix tW  is composed of the input 

data and membership function values and ty  is the 

output data. 

The CFNN model is sequentially trained at each FNN 

module. However, the CFNN model may suffer from an 

overfitting problem. When overfitting occurs, the 
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process of adding FNN modules will stop. The 

overfitting problem can be resolved through cross 

checking using the verification data. A criterion used to 

evaluate whether or not an overfitting problem occurs at 

stage g  is the sum of fractional errors for the checking 

data, which is expressed as follows: 
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The fractional errors in Eq. (10) are different from 

those we generally know. The training and checking 

processes stop if ( 1) ( )f fE g E g  , which means that 

the fractional error of the checking data increases 

according to the increase in the number of stages. When 

the condition ( ( 1) ( ))f fE g E g   is satisfied, the 

CFNN model may begin to overfit if the process of 

adding an FNN module is continued. If the condition is 

not satisfied, the algorithm moves to the next stage, and 

an FNN module will be added. 

 
( )fE g

g
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Fig. 3. The fraction error ( )fE g  according to stage number. 

 

According as the number of FNN modules increases, 

the structure of the CFNN model will be complex. The 

complexity of the CFNN model is expected to be 

proportional to the element number of parameter vector 

q  in Eq. (8). Thus, in this study, the complexity is 

defined as the element number of parameter vector q  of 

all FNN modules contained in the CFNN and is 

calculated as follows: 

 

( 2 ) / 2complexity G G m n       

 

where G  is the number of the FNN modules, m  is the 

number of the input variables, and n  the is number of 

fuzzy rules. 

The complexity of the CFNN model radically 

increases as the number of FNN modules increases, and 

it linearly increases according to the number of input 

variables and number of fuzzy rules. 

 

3. Result of simulation 

 

Table II lists the performance results obtained by the 

CFNN model for the hot-leg LOCA, cold-leg LOCA, 

and SGTR, respectively. As listed in Table II-(a), for 

the hot-leg LOCA, the average RMS error were 0.4% 

and 0.6% for the development data and test data, 

respectively. As listed in Table II-(b), for the cold-leg 

LOCA, the average RMS error were 0.3% and 1.2% for 

the development data and test data, respectively. In 

addition, in Table II-(c) for the SGTR, the average RMS 

error were 3.2% and 3.8% for the development data and 

test data, respectively.  

Fig. 4 shows the RMS errors of the development and 

test data, respectively. The RMS error gradually 

decrease as the number of stages in the CFNN model is 

increased by the repetitive process. Even if the RMS 

error differs according to the LOCA break positions and 

is relatively large for SGTR, the RMS error level is 

below about 4%. The CFNN model is confirmed to 

accurately predict the LOCA break size. 

Table III lists the RMS errors of development data 

for the CFNN model and the support vector regression 

(SVR) model. The basic concept of the SVR is to 

nonlinearly map the original data into a higher 

dimensional space.  
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The input variables of SVR and CFNN are the same. 

The CFNN model is much better than the SVR model.  

 

Table II:  Performance of the CFNN model 

(a) Hot-leg 

Number 

of fuzzy 

rules 

Development data Test data 

RMS 

error(%) 

Max 

error(%) 

RMS 

error(%) 

Max 

error(%) 

2 0.27 0.91 0.55 0.93 

3 0.65 1.96 0.72 1.43 

 

(b) Cold-leg 

Number 

of fuzzy 

rules 

Development data Test data 

RMS 

error(%) 

Max 

error(%) 

RMS 

error(%) 

Max 

error(%) 

2 0.40 1.14 0.66 1.74 

3 0.15 0.40 1.84 5.77 
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(c) SGTR 

Number 

of fuzzy 

rules 

Development data Test data 

RMS 

error(%) 

Max 

error(%) 

RMS 

error(%) 

Max 

error(%) 

2 3.86 15.29 4.04 7.40 

3 2.60 10.45 3.62 8.43 

 

Table III: Comparison of the CFNN and SVR models 

for development data 

LOCA position CFNN SVR 

Hot-leg 0.27 3.16 

Cold-leg 0.40 2.52 

SGTR 3.86 5.27 
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(a) Hot-leg LOCA 
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(b) Cold-leg LOCA 
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(c) SGTR 

 
Fig. 4. Stage number of CFNN versus RMS error 

 

 

4. Conclusions 

 

The CFNN model has been designed to rapidly 

predict the LOCA break size in LOCA situations. The 

CFNN model was trained by using the training data set 

and checked by using test data set. These data sets were 

obtained using MAAP code for OPR1000 reactor. The 

performance results of the CFNN model show that the 

RMS error decreases as the stage number of the CFNN 

model increases. In addition, the performance result of 

the CFNN model presents that the RMS error level is 

below 4%. Therefore, it is confirmed that the CFNN 

model can accurately predict the LOCA break size. If 

the operators can predict the break size in the LOCA, 

they can response quickly and properly to LOCA 

circumstances to prevent the meltdown of reactor core. 
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