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1. Introduction 

 
Fuel pellets and fuel clad barriers during reactor 

operation should be operated within the various safety 

limits such as the local power density (LPD) and the 

departure from nucleate boiling ratio (DNBR). 

Therefore, detailed 3-Dimensional (3D) core power 

distribution monitoring is required during reactor 

operation.  

The LPD and DNBR must be calculated in order to 

perform the main functions of the core protection 

calculator (CPC) and the core operation limit 

supervisory system (COLSS) [1]. CPC and COLSS play 

a role in the protection and monitoring systems of the 

optimized power reactor 1000 (OPR1000) and the 

advanced power reactor 1400 (APR1400). 

LPD should be estimated accurately to prevent fuel 

rods from melting. LPD at the hottest part of the core is 

called the power peaking factor (PPF, qF ). LPD at the 

hottest part of the core is more important than LPD at 

any other position in a reactor core. DNBR and PPF are 

the most important factors that must be continuously 

monitored from a safety aspect. 

The aim of the study is to calculate PPF in a reactor 

core by a cascaded fuzzy neural networks (CFNN) 

model according to operating conditions. The CFNN 

can be used to optimize the value through the process of 

adding fuzzy neural networks (FNN) repeatedly. The 

operation condition is reactor power, core inlet 

temperature, pressurizer pressure, mass flowrate, axial 

shape index (ASI), and variety of control rod position. 

The proposed CFNN model that is a PPF estimation 

algorithm is verified by using the nuclear and thermal 

data acquired from numerical simulations of OPR1000. 

 

2. Methods and Results 

 

2.1 Fuzzy inference system (FIS) 

 

The fuzzy inference system (FIS) uses the conditional 

rules that is comprised of if-then rules of a pair of the 

antecedent and consequent [2]. This study uses the 

Takagi-Sugeno-type FIS [3], which does not need the 

defuzzifier in the output terminal because its output is a 

real value.  

In the FIS, an arbitrary thi  fuzzy rule can be 

expressed as follows (first-order Takagi-Sugeno-type): 
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Because the function ( ( ))if x k  is expressed as the 

first-order polynomial of input variables, FIS is called 

the first-order Takagi-Sugeno-type FIS in Eq. (2). The 

number of N  input and output training data 

 ( ) ( ), ( )T Tz k k y k x  (where 1 2( ) ( ( ), ( ),T k x k x kx  

, ( ))mx k and 1, 2, ,k N  ) are assumed to be 

available, and the input and output variables are 

normalized. In general, there is no special restriction on 

the shape of the membership functions. In this study, the 

symmetric Gaussian membership function is used to 

reduce the number of parameters to be optimized. 
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The FIS output ˆ( )y k is calculated by weight-

averaging the fuzzy rule output ˆ( )y k  as follow: 
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The vector q  is called a consequent parameter vector 

that has ( 1)m n dimensions, and the vector ( )kw  

consists of input data and membership function values. 

The estimated output for a total of input and output data 

pairs induced from Eq. (4) can be expressed as follows: 

ˆ y Wq  (7) 

where 
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The matrix W  has ( 1)N m n  dimensions.  

 

2.2 FIS training 

 

In this study, the FIS is optimized using the two 

combined methods of a genetic algorithm and a least 

squares method. The training data were used to develop 

the FNN model. The test data were used to verify the 

developed FNN model, and they are different from the 

training data set. The following fitness function for the 

genetic algorithm is proposed to minimize the maximum 

error and root mean square (RMS) error. 
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The variable ( )y k  is the actual output value and 

ˆ( )y k  is its value estimated using the FNN model. If the 

antecedent parameters are determined using a genetic 

algorithm through selection, crossover, and mutation, 

the resulting parameters appear similar to Eq. (7) as a 

first-order combination. Therefore, the consequent 

parameter q  can be calculated easily using the least 

squares method. That is, the consequent parameter q  is 

calculated to minimize an objective function. The 

objective function consists of the square error between 

the actual value ( )y k  and its estimated value ˆ( )y k , and 

it is expressed as follows: 
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A solution for minimizing the above objective 

function can be obtained using the following equation: 

t ty Wq  (10) 

where 

[ (1) (2) ( )]Tt tNW w w w
 

 

The matrix tW  has ( 1)tN m n   dimensions in Eq. 

(10). The parameter vector q  can be solved easily from 

the pseudo-inverse as follows: 
1( )T T

t t t t
q W W W y  (11) 

 

The parameter vector q  can be calculated from a 

series of input and output data pairs and their 

membership function values because the matrix tW  

consists of input data and membership function values. 

 

2.3 Cascaded fuzzy neural networks (CFNN) 

 

The foregoing FNN is composed of the fuzzy logic 

and neural network theory. Most of the existing FNN 

models have been proposed to implement different 

types of single-stage fuzzy reasoning mechanisms. 

However, single-stage fuzzy reasoning is only the most 

simple among a human being’s various types of 

reasoning mechanisms. Syllogistic fuzzy reasoning, 

where the consequence of a rule in one reasoning stage 

is passed to the next stage as a fact, is essential to 

effectively build up a large scale system with high level 

intelligence [4]. Therefore, it is described by applying 

these techniques in this paper. 

The CFNN model contains two or more inference 

stages where each stage corresponds to a single-stage 

FNN module. The architecture of the CFNN is shown in 

Fig. 1. 

The CFNN can be used to estimate the target value 

through the process of adding FNN repeatedly. The 

second stage FNN uses the initial input variables and 

the output variable of the first stage FNN as input 

variable. Therefore, this process is repeated L  times to 

find the optimum value if over-fitting phenomena do not 

appear. 

Similarly to Eq. (1), an arbitrary thi rule of the CFNN 

can be expressed as Eq. (12): 
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where L is the stage number of CFNN. The CFNN 

model is trained sequentially at each FNN module in the 

same way as explained in subsection 2.2 and 2.3 
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Fig. 1. Cascaded fuzzy neural network (CFNN) 

 

2.4 Uncertainty Analysis 

 

When CFNN models are used to estimate safety-

critical parameters such as the LPD, model estimates 

require an uncertainty analysis to determine the 

accuracy of the data-based model prediction. Through 

an uncertainty analysis, a prediction interval can be 

calculated such that the exact value exists in the 

prediction interval at a specified confidence level. 

There are several possible sources of uncertainty in 

predictions using data-based models; selection of 

training data, model structure including complexity, and 

noise in the input variables and the output variables [5]. 

Data-based model is developed using a given training 

data set. Each possible training data set selected from 

the entire population of data will generate a different 

model and there will be a distribution of predictions for 

a given observation data. Also, inappropriate model will 

cause a bias. 

In this study, we analyzed the uncertainty about the 

CFNN model that has been developed using a statistical 

method. The bootstrap method works by generating 

many bootstrap samples of the training data set and re-

training the CFNN model parameters on each bootstrap 

sample. After repetitive sampling and re-training, the 

resulting predictions provide a distribution for the LPD 

value. This distribution can be used to calculate 

prediction intervals. In this study, we used one of the 

pair of bootstrap sampling algorithm of statistical 

uncertainty analysis. The available data is divided into 

development data and test data. The development data 

consists of a large pool of data from which training and 

verification samples can be drawn. The test data is fixed. 

Uncertainty is separated into two types such as the 

variability and bias. The calculation steps of the 

bootstrap pairs sampling algorithm are as follows [6]: 

At first, J  samples ( 100J   in this paper) are 

generated from the development data, each one of size 

N  drawn with replacement from the N  training data  

 1 1 2 2( , ), ( , ), , ( , )N Ny y yx x x  . The thj  sample is 

denoted by   1 1 2 2( , ), ( , ), , ( , )j j j j j j

N Ny y yx x x  . 

For each bootstrap sample, an FNN model is obtained. 

The variance and the bias of the thi  predicted value are 

estimated by 
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where n  is the number of the development data. 

 

The pool of development data represents all available 

data, excluding the specified set of fixed test data. Since 

bias estimates based on the training data can be much 

lower than bias estimates based on an independent set of 

data, especially in case of an overfitting, one should 

compute bias estimates based on the data pool rather 

than the training data. The estimate with a 95% 

confidence interval for an arbitrary test input ox  is 

  2

0 0 0
ˆ2ˆ ˆVar y biasy y      

 

3. Application to PPF estimation. 

 

The proposed algorithm was applied to the first fuel 

cycle of OPR1000. The data was obtained by running 

the MASTER [7] and COBRA codes [8]. The 

MASTER (Multipurpose Analyzer for Static and 

Transient Effects of Reactor) reactor analysis code 

developed by KAERI (Korea Atomic Energy Research 

Institute) is a nuclear analysis and design code which 

can simulate the PWR and BWR core in 1-, 2-, 3-

dimensional geometry. The MASTER code was 

designed to have a variety of capabilities such as static 

core design, transient core analysis and operation 

support and is interfaced with the COBRA code for 

thermos-hydraulic calculations.  

The data obtained from simulation of the MASTER 

code comprise a total of 18816 input-output data pairs 

( 1 2 9, , , , rx x x y ) that can describe the reactor core 

states appropriately in the ranges of the input variables. 

 In this study, the used PPF data were composed of 

100 pieces of test data. 1x  through 9x  are the input 

signals that represent the reactor power, core inlet 

temperature, coolant pressure, mass flowrate, axial 

shape index (ASI), R2, R3, R4 and R5 control rod 
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positions, and ry  is the output signal which indicates 

the PPF in the reactor core. ASI is defined as 

( ) / ( )B T B TP P P P   where BP  is the bottom-half 

power and TP  is the top-half power of a nuclear reactor.  

The two respective CFNN models were optimized for 

two kinds of data sets, the positive (relatively high 

power at the top part of the reactor core) ASI cases 

(7625 data points) and the negative ASI cases (7625 

data points). This results in smaller errors compared 

with using only one summed data set. All the acquired 

data of the positive or negative ASI cases are divided 

into a training data set, a verification data set, and a test 

data set. 

Table I shows the calculation results when the SPND 

signals were not used. The root mean squared (RMS) 

error is 0.0337% and the maximum error is 0.3368% for 

all data except the test data with positive ASI. The RMS 

error is 0.0485 and the maximum error 0.6471% for all 

data except the test data with negative ASI. 

 

Table I: PPF Calculation Results by the CFNN  

Without SPND signals 

No. of 

data 

points 

Relative 

maximum 

error (%) 

RMS 

error 

(%) 

Positive 

ASI 

Development 

data 
7525 0.1994 0.0314 

Test data 100 0.2963 0.0450 

All data except 

test data 
7625 0.3368 0.0337 

Negative 

ASI 

Development 

data 
7525 0.2856 0.0427 

Test data 100 0.3190 0.0597 

All data except 

test data 
7625 0.6471 0.0485 

 

Fig. 2 shows the results of the uncertainty analysis for 

the CFNN PPF predictive model. 

Actual PPF value and predictive PPF value exist in 

both upper prediction interval (PI) and Lower PI bound.  

Therefore, it can be seen that the prediction is reliable. 

PI is approximately below 0.01. Therefore, the PPF can 

be predicted very accurately. 

 

4. Conclusions 

 

In this study, CFNN models have been developed and 

applied to the calculation of the PPF in the reactor core. 

The CFNN regression models were optimized by using 

the data set prepared as training data and tested by using 

verification data. 

The developed CFNN models were applied to the 

OPR 1000.  As a result, the RMS error of the estimated 

PPF values is below 0.05%. In addition, their 

uncertainty was analyzed by a bootstrap method using 

100 sampled development data sets. The prediction 

intervals are very small, which means that the predicted 

values are very accurate. As a result of this study, the 

CFNN models are sufficiently accurate to be used in 

PPF monitoring. 
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Fig. 2. Uncertainty analysis for PPF predictive model. 
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