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1. Introduction 
 

The modified power method (MPM) was proposed to 
get the first two eigenmodes simultaneously [1-6]. It has 
been extended to get even higher eigenmodes with a 
general solution strategy recently [7-10]. In order to get 
the first N eigenmodes, N coarse meshes should be used. 
This method works well for 1D problems since all the 
eigenvalues are discrete. However, the application of 
this method to multi-dimensional problems may be 
problematic due to the degeneracy issues. In these cases, 
in order to get the first N eigenmodes, more than N 
coarse meshes should be used. In this paper, the 
corresponding modification to the MPM will be 
discussed, and the 2D C5G7 benchmark results will be 
presented to show the performance. 

 
2. Methods and Results 

 
2.1 The MPM Adopting More Coarse Meshes 

 
The key of the MPM is to solve the following linear 

equation system: 
 
 ,=WX VXΛ   (1) 
 

where , M NR ×∈W V  and , N NR ×∈X Λ . M is the 
number of meshes, while N is the number of modes. ,i jV  
is the integration of jth fission source over ith mesh 
before the power operation, ij jRi

V drψ= ∫ , while ,i jW  is 

the corresponding integration after the power operation, 

ij jRi
W A drψ= ∫ . The X matrix contains the linear 

coefficients to combine the source distributions to get 
the better eigenfunction estimations. Λ  is a diagonal 
matrix and its diagonal elements are the eigenvalues of 
the system. 

In the case of M>N, a matrix N MR ×∈G  is used to 
multiply the both sides of Eq. (1): 
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The G matrix is chosen at the beginning cycles 

satisfying N N×=GV I . Actually, G can be an arbitrary 

matrix if only ( )GV  is a full rank matrix. TMP  is the 
transfer matrix that can be calculated at the end of every 
cycle according to Eq. (2). 

From Eq. (2) it can be seen that the eigenvalues of the 
transfer matrix are the eigenvalues of the system. The 
eigen-decomposition of the transfer matrix, 

1TM −=P QΛQ , provides the eigenvectors that can be 
used to solve the linear combination factors: 
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The fission sources can be updated as: 
 
 ( ) ( )1 1' ,..., ' ,..., .N Nψ ψ ψ ψ= X   (4) 
 

2.2 The 2D C5G7 Benchmark Results 
 
The 2D C5G7 benchmark was modeled using 

multigroup Monte Carlo with the MPM. The 2D one 
quarter core was shown in Fig. 1. The detailed geometry 
and cross section data can be found in the benchmark 
specification. 

 

 
 

Fig. 1. The 2D C5G7 core model. 
 
All the simulations were done with 50 inactive cycles, 

150 active cycles and 200,000 histories per cycle. The 
uniform 4-by-4 meshes and 4-by-5 meshes across the 
core region were used to get the first 16 eigenmodes. 

The Shannon entropy results are shown in Fig. 2. The 
simulation of MPM with 4-by-4 meshes to get the first 
16 eigenmodes is stable at the first 60 cycles, but after 
that it becomes unstable. The behavior is similar even if 
the histories per cycle increased dramatically. However, 
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the simulation of MPM with 4-by-5 meshes to get the 
first 16 eigenmodes is stable all the time. 

 

 
Fig. 2. The Shannon entropy results of different methods. 

 

 
Fig. 3. The first 16 fission source eigenmodes of the 2D C5G7 
model. 
 

 
Fig. 4. The eigenvalue spectrum with 16 eigenmodes obtained 
using the 4-by-5 meshes. 
 

Table I: The First 16 Eigenvalues of the 2D C5G7 Model 

Method Eigenvalue Result 
Original k0 1.18642 (12) 

Modified 
Power 

Method 

k0 1.18672 (08) 
k1 0.91676 (17) 
k2 0.87620 (19) 
k3 0.72526 (17) 
k4 0.59174 (20) 
k5 0.59193 (18) 
k6 0.49945 (18) 
k7 0.49757 (19) 
k8 0.37095 (17) 
k9 0.36950 (20) 
k10 0.36657 (19) 
k11 0.32432 (19) 
k12 0.32296 (20) 
k13 0.26014 (18) 
k14 0.25012 (18) 
k15 0.22492 (19) 

 
The first 16 eigenmode fission source distributions 

are shown in Fig. 3. Fig. 4 shows the eigenvalue 
spectrum. The eigenvalues of the TM are the 
eigenvalues of the finally accumulated TM, and the 
eigenvalues of cycle tally are the averages of cycle 
tallied eigenvalues, which are calculated as: 
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where i is the eigenmode index, j is the neutron index, 
and NHPC is the total number of histories per cycle. 
Table I lists the tallied eigenvalues, where k0 is tallied 
with collision estimator, absorption estimator and track 
length estimator, while the higher mode eigenvalues are 
tallied according to Eq. (5), so their statistical errors are 
bigger than the fundamental mode. As there is no 
symmetry of the core model along the diagonal from 
upper right to lower left, the 1st and 2nd eigenmodes are 
not degenerated. The degeneracy may only happen for 
the 4th and 5th eigenmodes. 

 
3. Conclusions 

 
Due to the possible degeneracy issues for the 

eigenmodes of multi-dimensional problems, the 
application of modified power method requires more 
number of meshes than the number of eigenmodes. A 
preprocessing matrix can be used to multiply the fission 
source integrals, so that the transfer matrix can be 
solved as usual. The 2D C5G7 benchmark was modeled 
with the new method, and the results demonstrated the 
effectiveness of this method for practical problems. The 
application of this method to 3D problems is guaranteed 



Transactions of the Korean Nuclear Society Spring Meeting 
Jeju, Korea, May 12-13, 2016 

 
 
since there are no essential differences between 2D and 
3D for the degeneracy issues. 
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