Calculation of MUF for the Pyro-processing Facility

CONTENTS

1 연구 배경 **

2 주요 내용 **

3 주요 결과 [▶]

1

연구 배경

 $\blacktriangleright \blacktriangleright$

연구 개요

- ▶ 민감 핵주기 기술 개발
 - 국내에서 후행핵주기 기술 대안 중 하나로 건식재처리기술 개발을 추진 중
 - ▶ Pu과 같은 특수핵물질(Special Nuclear Materials) 처리 시설
- ▶ 핵비확산성 보증 (IAEA 안전조치 적용)
 - 설계정보서
 - 핵물질 계량관리
 - ▶ 현장검증
 - ▶ 격납감시

여구 개요

- 핵물질 계량관리
 - 지정된 구역 내 핵물질의 양 및 변화량을 확인하기 위해 수행하는 활동
 - ▶ MBA 구분, MBA 별 핵물질 양에 대한 기록 유지
 - ▶ PIT 기간 내 물질수지를 확정하고 MUF 계산
 - ▶ 계산된 MUF량과 허용 오차를 확인
- 규제 시스템 구축을 위한 핵확산에 대한 정량적 평가
 - ▶ 미계량핵물질(MUF):핵물질 계량관리의 유효성 검증
 - ▶ 핵물질매력도(FOM) : 공정 내 취약지점 분석/검증

미계량핵물질(Material Unaccounted For)

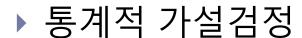
▶ 물질수지구역(Material Balance Area, MBA)에서의 물질 재고의 오차 및 계량 오차량

$$MUF = (PB + X - Y) - PE$$

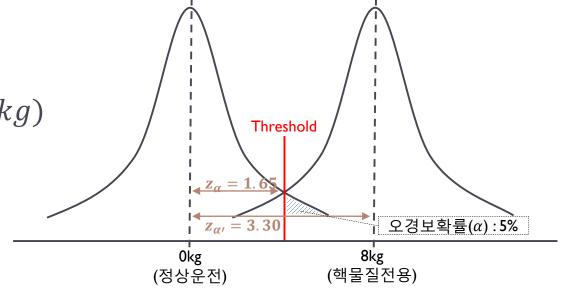
Where,

PB: the beginning physical inventory

X: the sum of increases to inventory


Y: the sum of decreases to inventory

PE: the ending physical inventory



물질수지평가 (MUF 불확도)

▶ 벌크 시설에서는 <u>측정오차</u>, <u>공정오차</u>, 측정에서의 오류, 측정되지 않은 손실, 기록에서의 오류 등으로 MUF 에서 불확도가 필연적으로 발생

- ▶ 탐지확률 95%
- $ightharpoonup 3.3\sigma_{MUF} \le 1SQ(8kg)$

물질수지평가 (MUF 불확도)

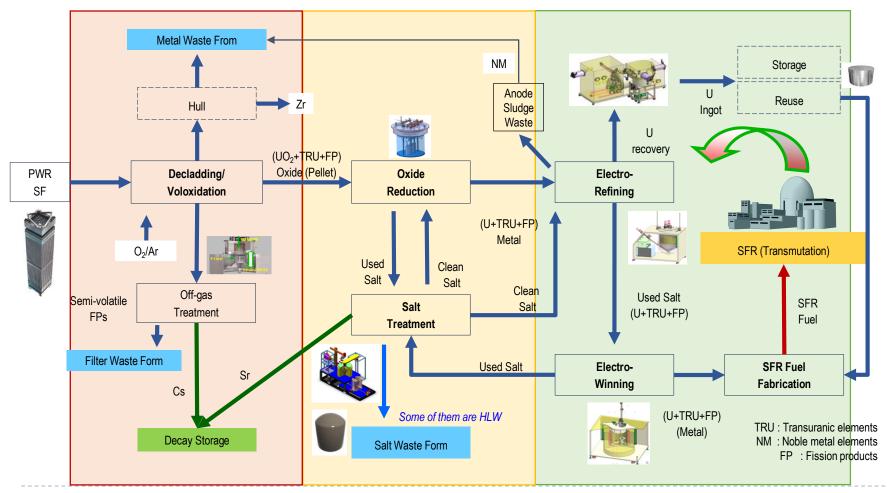
▶ 오차(Error)의 종류

- Random Error(σ_r): 동일한 측정 조건하에서 생기는 오차
- ▶ Systematic Error(σ₅): 측정기기의 부정확성, 측정방법의 차이 등 에서 발생하는 호차

▶ 오차 발생 요인들

- Bulk(σ^b) : 측정에서 발생하는 오차
- Sampling(σ^s) : 표본 추출에서 발생하는 오차
- Analytic(σ²) : 분석에서 발생하는 오차

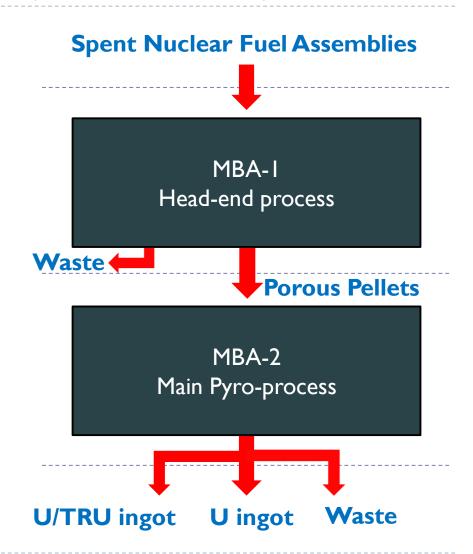
^{*} IAEA TECDOC-261, IAEA Safeguards Technical Manual, IAEA, Vienna, 1982



주요 내용

>>

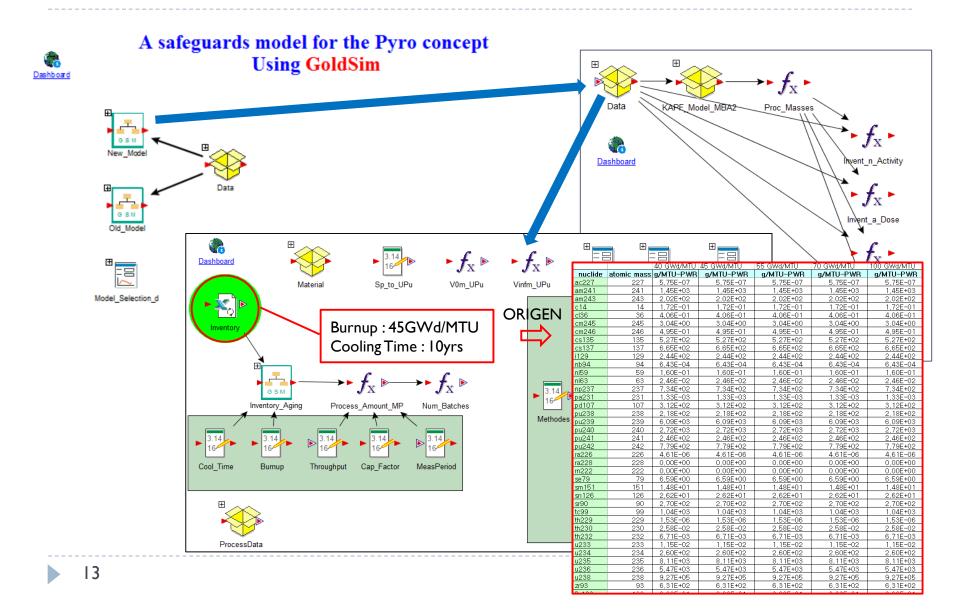
Facility Information (Pyro-processing facility)


Pyroprocessing Flow: KAPF

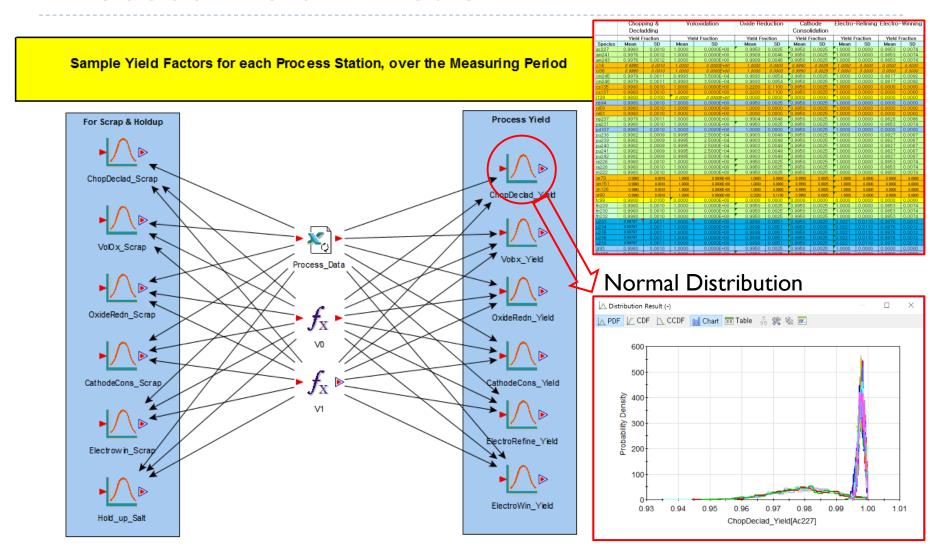
Facility Information (MBA, KMP)

MBA		FKMP and IKMP (Material Form)	Accounting a)	Add. Analysis ^{b)}	Requirement c)	
	Flow KMP-1	Input Flow (SFA)	ID, Item Count	Rad. Meas.†	Remotely Verification Capability	
	Flow KMP-2	Output Flow (Porous Pellets)	Weighing	DA/NDA	Sample Taking/Transfer	
MBA1		Output Flow (Head-end Wastes)	NDA	DA	Sample Taking/Transfer	
SF Receipt, Storage Head-end	KMP-A	SF Assembly Storage Area	ID, Item Count	Rad. Meas.†	Remotely Verification Capability	
Process Cell	KMP-B	Before De-cladding (SF rods)	ID, Item Count	Rad. Meas.†	Remotely Verification Capability	
	KMP-C	After Mixing (SF powder)	DA	NDA	Sample Taking/Transfer	
	KMP-D	Other materials in the cell	Weighing, DA, NDA	DA	Sample Taking/Transfer	
	Flow KMP-1	Input Flow (Porous Pellets)	Weighing	DA/NDA	Sample Taking/Transfer	
	Flow KMP-2	Output Flow (U/TRU Products)	DA	NDA	Sample Taking/Transfer	
MBA2		Output Flow (U Products)	NDA	DA	Sample Taking/Transfer	
Main Pyro- processing		Output Flow (Main process Wastes)	NDA	DA	Sample Taking/Transfer	
Cell	KMP-A	Before E-Reduction (Porous Pellets)	Weighing	DA/NDA	Sample Taking/Transfer	
	KMP-B	Electro-Refining (Salt)	DA	NDA [‡]	Sample Taking/Transfer	
	KMP-C	Other materials in the cell	Weighing, DA, NDA	DA	Sample Taking/Transfer	
MBA3 Storage	Flow KMP-1	Input Flow (U/TRU, U Products, Wastes)	ID, Item Count	NDA	Remotely Verification Capability	
	Flow KMP-2	Output Flow (U/TRU, U Products, Wastes)	ID, Item Count	NDA	Remotely Verification Capability	
	KMP-A	U/TRU Products	IID, Item Count	NDA	Transferring Storage Casks	
	KMP-B	U Products	ID, Item Count	NDA	Transferring Storage Casks	
	KMP-C	Wastes	ID, Item Count	NDA	Transferring Storage Casks	

- a) DA always combining weighing: * SNM in samples in analysis laboratory, UCl3, SNM from anode sludge, scraps, etc.
- b) Additional NDA measurement for IAEA verification and/or NRTA: [†] IAEA verification tools such as PDET, Slab detector, [‡] Including additional measurement for NRTA beside for inspector verification
- c) Requirements for sample taking and transferring always includes weighing requirement
- d) Waste storage area can be the separated MBA from the product storage MBA, but simply assumed one MAB for all products and wastes as there are no significant differences in the conceptual design phase.

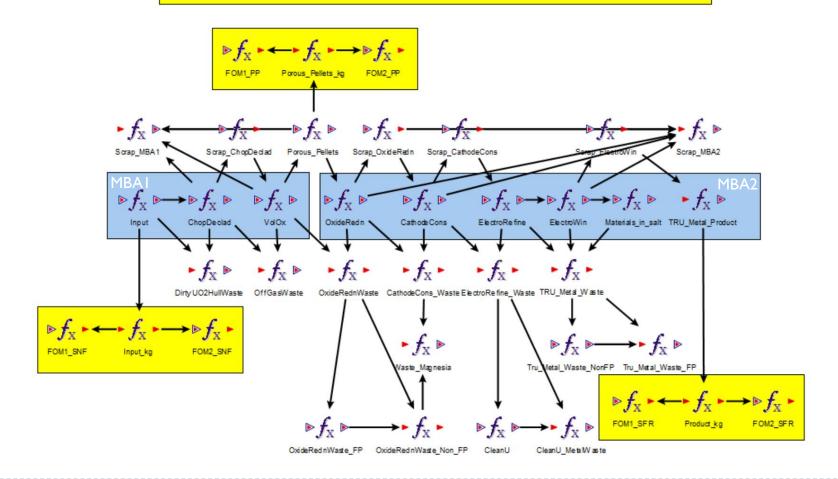


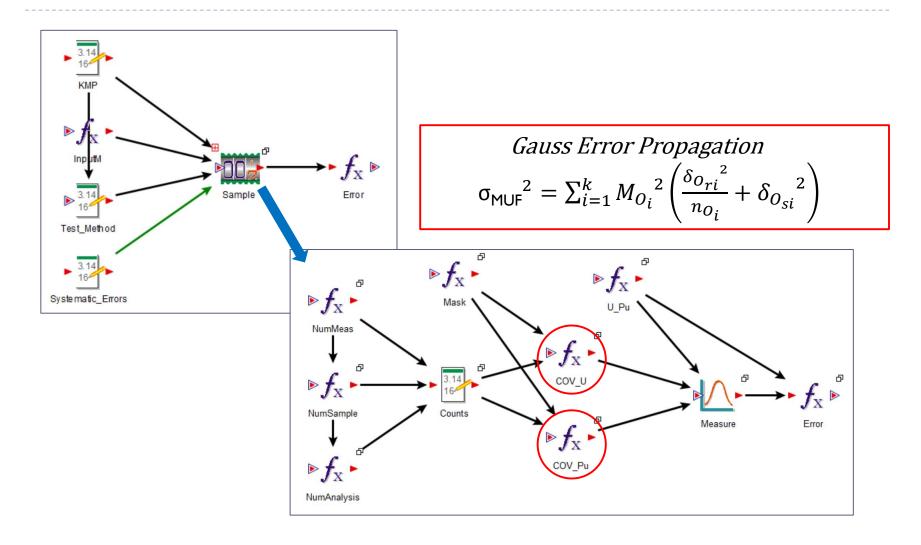
Facility Information (Measurement Method, Uncertainty)


		Uncertainty					
Material Form	Measurement Method (Equipment)	Bulk		Sampling		Ana	alytic
	Method (Equipment)	δ_r^b	δ_s^b	δ_r^s	δ_s^s	δ_r^a	δ_s^a
SF assemblies	Item count	0.05	0.05	-	-	-	ı
SF rods	Item count	0.05	0.05	-	-	-	ı
SF oxide powder (homogeneous)	U-NDA M1 & M3	0.05	0.05	1.0	0.5	1.2	3.8~ 8.3
(Holliogeneous)	DA	0.05	0.05	1.0	0.5	0.6	0.3
	U-NDA M2 (U)	-	-	-	-	1.8	5.0
U metal ingot	U-NDA M1 (Pu)	1	1	-	-	1.2	5.0~ 9.0
	DA (U, Pu)	0.05	0.05	0.05	0.05	0.5	0.2
	Fission chamber (Pu)	-	-	-	-	0.02 9	4.9~ 8.9
U/TRU metal ingot	U-NDA M3 (U)	-	-	-	-	1.8	5.0
	DA (U, Pu)	0.05	0.05	0.2	0.2	0.5	0.2
UO or UO2 powder (recycle)	U-NDA M2	-	ı	-	-	1.8	5.0
UCl₀ pellets	U-NDA M2	-	-	-	-	1.8	5.0
U+ LiCl+ KCl	U-NDA M2	0.05	0.05	10	5.0	1.8	5.0
U+ TRU+ LiCl+ KCl (refining)	Fission chamber	1	ı	-	-	8.0	10.0
Hull and other wastes	Waste PNC + Cm ratio	0.05	0.05	10	5.0	6.0	10.0
Reducer salt waste (SF salt)	Waste PNC + Cm ratio	0.05	0.05	10	5.0	8.0	10.0
ER/EW salt waste (TRU salt)							10.0
Reducer cathode (SF metal)	Waste PNC + Cm ratio	0.05	0.05	10	5.0	8.0	10.0
Refiner cathode (U metal)	Waste ANC	0.05	0.05	10	5.0	8.0	10.0
Cadmium cathode (TRU metal)	Waste PNC + Cm ratio	0.05	0.05	10	5.0	8.0	10.0

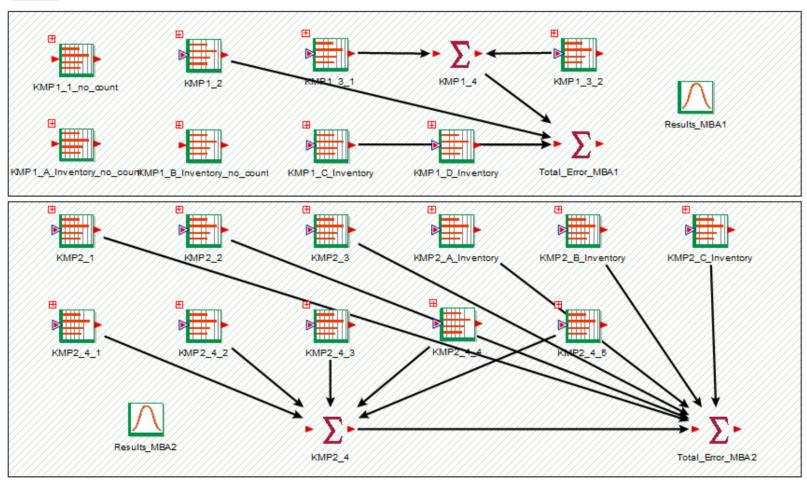
^{*} H. Aigner, R. Binner, E. Kuhn, International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials, IAEA, Vienna, Austria

Model Data

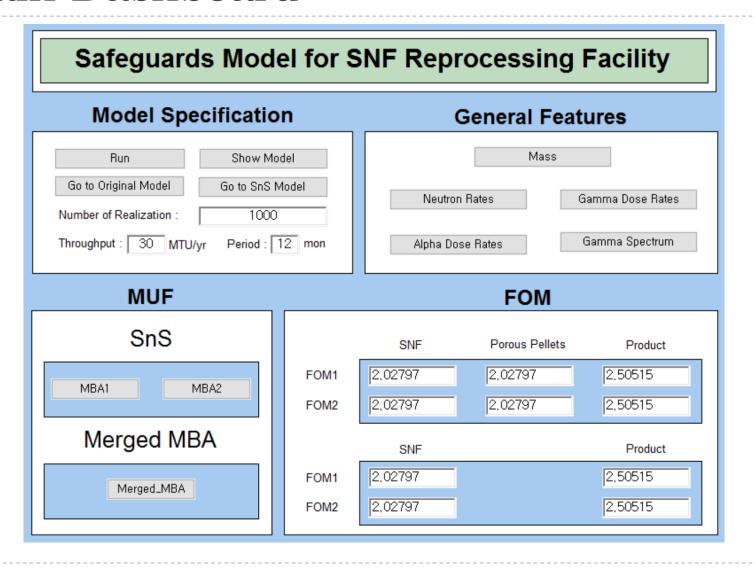

Process Yield Fraction


Total mass flow simulation

Simulate total mass throughflows for one material balance period (MBP)



Error Calculation in each KMP



KMPs Information

Main Dashboard

Sampling/Uncertainty Data Input

Sampling Data

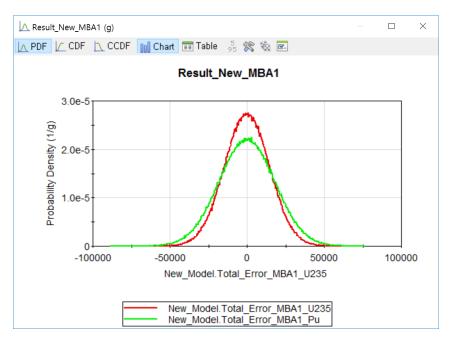
For each test type, enter the size of the item or container (in kg of waste), the fraction of items that are tested, and the number of U/Pu tests done on each tested item.

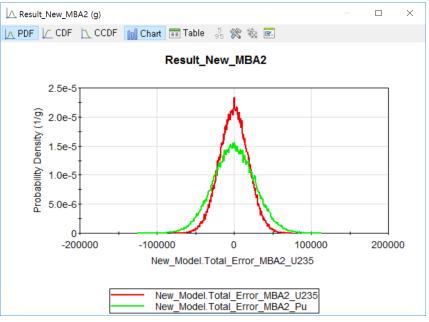
	TestContSize [kg]	TestFraction [%]	TestCount	Methodes
MBA1_KMP2	20	75	3	1
MBA1_KMP3_A	20	75	3	8
MBA1_KMP3_B	20	75	3	8
MBA1_KMPC	20	75	3	1
MBA1_KMPD	20	75	3	1
MBA2_KMP1	20	75	3	1
MBA2_KMP2	20	75	3	5
MBA2_KMP3	20	75	3	3
MBA2_KMP4_A	20	75	3	10
MBA2_KMP4_B	20	75	3	10
MBA2_KMP4_C	20	75	3	3
MBA2_KMP4_D	20	75	3	5
MBA2_KMP4_E	20	75	3	5
MBA2_KMPA	20	75	3	1
MBA2_KMPB	20	75	3	7
MBA2_KMPC	20	75	3	1

For U235, for each test type, enter the random and systematic test standard error values for weighing, sampling, and testing.

[%]	R_Weighing	R_Sampling	R_Tests	S_Weighing	S_Sampling	S_Tests
1	0.05	1.0	1.2	0.05	0.5	6.0
2	0.05	1.0	0.6	0.05	0.5	0.3
3	0	0	1.8	0	0	5.0
4	0.05	0.05	0.5	0.05	0.05	0.2
5	0	0	1.8	0	0	5.0
6	0.05	0.2	0.5	0.05	0.2	0.2
7	0.05	10	1.8	0.05	5.0	5.0
8	0.05	10	6.0	0.05	5.0	10
9	0.05	10	8.0	0.05	5.0	10
10	0.05	10	8.0	0.05	5.0	10
11	0.05	0.4	8	0.05	0.4	4

For Pu, for each test type, enter the random and systematic test standard error values for weighing, sampling, and testing.

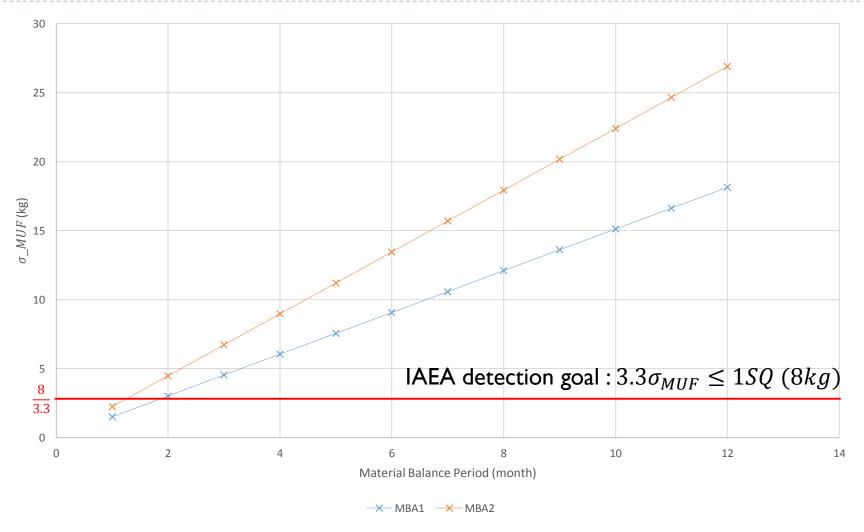

[%]	R_Weighing	R_Sampling	R_Tests	S_Weighing	S_Sampling	S_Tests
1	0.05	1.0	1.2	1.	0.5	6.0
2	0.05	1.0	0.6	0.05	0.5	0.3
3	0	0	1.2	0	0	7.0
4	0.05	0.05	0.5	0.05	0.05	0.2
5	0	0	0.029	0	0	6.9
6	0.05	0.4	10	0.05	0.4	5
7	0.05	10	1.8	0.05	5.0	5.0
8	0.05	10	6.0	0.05	5.0	10
9	0.05	10	8.0	0.05	5.0	10
10	0.05	10	8.0	0.05	5.0	10
11	0.05	0.4	8	0.05	0.4	4



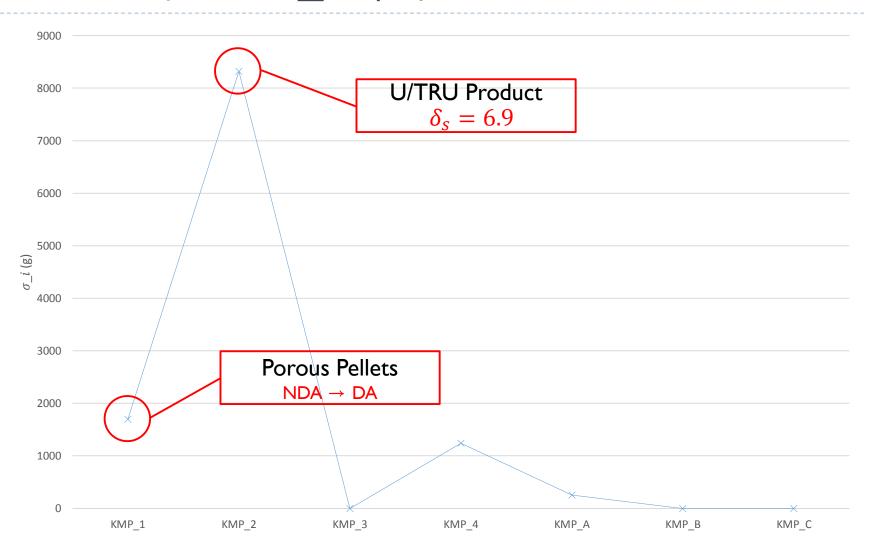
주요 결과

>>

각 MBA 별 σ_{MUF}



Total Error (U235)					
MBA-I	14,624 g				
MBA-2	18,756 g				


Total Error (Pu)					
MBA-I	18,142 g				
MBA-2	26,893 g				

Pu의 MBP 별 σ_{MUF}

^{*} Scott DeMuth (LANL), Proliferation Risk Assessment for Large Facilities with Simulation and Modeling, Global 2011 Chiba, Japan December 11-16, 2011

MBA2의 KMP별 기여도

$\delta_{\scriptscriptstyle S}$ 에 따른 $\sigma_{\scriptscriptstyle MUF}$ 의 민감도

 $\sigma_{-}MUF$ (kg) 3.3 Material Balance Period (month) $-\times$ 6.9% $-\times$ 5.9% $-\times$ 4.9% $-\times$ 3.9% $-\times$ 2.9% $-\times$ 1.9% $-\times$ 0.5%

결론

- ▶ 30 MTU/yr 규모의 재처리 시설에서의 MUF 불확도가 높아 detection goal을 달성하기 어려움
- 이를 달성하기 위해서는 MBP를 줄이거나 MUF 불확도에 미치는 영향이 높은 U/TRU product에서의 계통 오차(systematic error)를 0.5% 이하로 줄여야 함
- 가정이 많고 입력값에 대한 검증이 필요
- ▶ 벌크시설에 대한 신뢰할 수 있는 공정정보,계측정보, 물질수지정보가 주어진다면 합리적인 MUF 불확도 및 공정/계측에 대한 성능목표치 추정 가능

감사합니다

