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1. Introduction 

 
Best estimate simulations of nuclear power plant 

(NPP) transients can be performed in support of success 

criteria definitions in Level 1 Probabilistic Safety 

Assessment (PSA).  Reducing the use of conservatisms 

and bounding assumptions in the analysis can give a 

more realistic estimate of the safety margin provided by 

the safety systems configurations representing the 

success criteria.  Furthermore, rigorous treatment 

sequence timing uncertainties in success criteria 

definitions is difficult within the conventional event 

tree/fault tree (ET/FT) methodologies used in Level 1 

PSA.  This paper presents a new methodology to 

estimate safety margin while addressing sequence 

timing, safety system configuration, technical 

specification, and thermal hydraulic code parameters 

uncertainties.  The key aspect of the methodology is the 

Gaussian process model (GPM), a nonparametric 

regression method for multivariate regression with 

internal estimate of model uncertainty[1,2], is used to 

process data from many simulations and is a surrogate 

model for predicting safety parameter distributions as a 

function of input uncertainties.  The methodology is 

demonstrated for the injection phase of a large-break 

loss-of-coolant accident (LBLOCA) and the safety 

margin of the Ulchin Units 3&4 (UCN3&4) success 

criteria are quantified. 

 

2. GPM Methodology for Estimating Safety Margin 

 

2.1 Methodology Overview 

 

The following summarizes the methodology steps for 

estimating safety margin with a GPM: 
 

1) Select accident scenario and identify relevant safety 

systems and success criteria. Select best estimate 

thermal hydraulic code and input model appropriate for 

simulating the accident. 
 

2) Identify sequence timing uncertainties and the 

technical specification ranges for the safety systems.  

Identify relevant thermal hydraulic phenomena and 

code input parameter uncertainties similar to Best 

Estimate Plus Uncertainty (BEPU) methodologies. 
 

3) Using sensitivity analysis or engineering judgment, 

partition input uncertainties into two groups: explicit 

regression variables representing most important inputs 

affecting thermal hydraulic phenomena and safety 

parameter, and implicit “noise” variables that only 

contribute to local variation of the safety parameter. 
 

4) Sample explicit regression variables using a space-

filling experimental design for coverage of the input 

space.  Randomly sample all implicit variables using 

conventional Monte Carlo.  Perform best estimate 

simulations for all samples and obtain safety parameter 

values from code outputs.  Simulation data is the 

training set for regression. 
 

5) Perform regression on the training data set using the 

GPM.  The GPM is a response surface model predicting 

the safety parameter as a function of the explicit 

variables, namely sequence timing and safety system 

configuration.  Uncertainty of safety parameter is 

estimated from the noise term of the GPM. 

 

2.2 Gaussian Process Model for Regression 

 

The GPM is unique among regression methods 

because it defines a predictive distribution of the 

dependent variable y, the safety parameter, at any input 

“test” location   .  The GPM is fully defined by the 

mean function and prediction variance.  The predictive 

distribution is assumed to be Gaussian parameterized by 

the mean function and prediction variance. The mean 

function and prediction variance are 
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The predictive distribution for y is  
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Equation (1) is a response surface model for predicting 

y and Eq. (2) is an estimate of the model uncertainty.  

The data noise variance is   
 .  The building block of 

Eqs. (1) and (2) is the squared exponential covariance 

function which defines covariance between data pairs 

using a distance based measure of the input locations 
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The length scales ri are sensitivities for each input 

dimension.  The scaling factor   
  is the signal variance 

and is a measure of magnitude y can vary over ri.  The 
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covariance matrix K of the training set defines the 

covariance between all n training data points with 

entries  
 

                           . (6) 

The covariance between the training data and a test 

point is the vector 
 

    [                              ] . (7) 

 

The GPM is a series of matrix and vector operations 

resulting in a weighted average or data smooth of the 

vector of code outputs y. 

The GPM parameters      
    

   must be learned 

from the training data using Bayesian inference 

techniques.  For the study, we use the leave-one-out 

method implemented in the GPML code [2].  

References [1,2] provide additional algorithm details 

about the GPM. 

 

2.3 LBLOCA Model and Reference Simulation 

 

For our analysis, we use the MARS code [3] and the 

UCN3&4 input model [4] to simulate the LBLOCA. 

The reference case represents the current success 

criteria which are to inject to at least 2 of 3 intact CLs 

through 2 of 3 safety injection tanks (SITs) and inject 

refueling water tank (RWT) water to at least 1 or 3 CLs 

using 1 of 2 low pressure safety injection (LPSI) pumps 

[5].  The LPSI pump is assumed to inject with a 30 s 

delay after the safety injection actuation signal (SIAS) 

which is the time to start the emergency diesel 

generator (EDG) and load the pump according to the 

loading sequence technical specification [6].  The LPSI 

pump injects at the minimum rated flow.  Figure 1 

shows the reference result for the hot pin clad 

temperature during the injection phase of the cold leg 

(CL) LBLOCA. 

The refill peak from 20 s to 100 s in Fig. 1 is a 

function of the large mass flow rates delivered by the 

SITs until they are depleted at 85 s.  Continued 

injection from the LPSI pump beyond 100 s controls the 

reflood cooling.  The increase in clad temperature for 

the top 1/3 of the core from 400 s to 500 s correlates to 

the decrease in downcomer and core collapsed water 

levels shown in Fig. 2 and the heat transfer regime 

transitioning from nucleate boiling to film boiling and 

single phase vapor heating, Fig. 3.  Film boiling and 

vapor heating are much less efficient heat transfer 

regimes shown by small heat transfer coefficient values 

calculated by MARS code in Fig. 4 when these heat 

transfer modes are active.  The peak clad temperature 

(PCT) during the reflood will be used as the safety 

parameter to estimate safety margin compared to the 

regulatory acceptance criteria limit of 1477 K.  The 

minimum downcomer and core collapsed water levels 

can also be used as figures-of-merit because the clad 

temperature is correlated to the levels. 
 

 
 

Fig. 1. Axial clad temperature profiles of hot pin during 

injection phase for 2/3 SITs injecting to 2/3 CLs and 1/2 LPSI 

pumps injecting to 1/3 CLs. 

 

 
 

Fig. 2. Collapsed water level in downcomer and core for 

reference case. 

 

 
 

Fig. 3. Active heat transfer modes axial node 11 of hot pin for 

reference case. 

 

 
 

Fig. 4. Heat transfer coefficient calculated by MARS code for 

axial node 11 of hot pin for reference case. 

 

2.4 Selection of Input Parameters and Sampling 

 

Table I lists the selected input paramaters and 

uncertainty distributions selected for the LBLOCA 

application of the GPM methodology. The list is 

representative of sequence timing, safety system 

function and configuration, technical specification 

ranges for safety system components, and thermal 
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hydraulic code parameters.  The list of parameters is not 

comprehensive of all uncertainties and was not 

generated from a formal Phenomena Identification and 

Ranking Table (PIRT).  The research scope of the paper 

is to demonstrate the GPM methodology so the 

parameters and distributions were selected using 

engineering judgment and are realistic for UCN3&4 

and the MARS model in the context of our application. 
 

Table I: Input Parameters and Uncertainties 

 

The delay time of EDG start, warmup, and loading of 

the SI pumps is the primary sequence timing parameter 

of the injection phase of the LBLOCA.  For the study 

we extend the uncertainty range from the loading 

sequence technical specification of 15 s to 30 s out to 

600 s in order to analyze the sensitivity of the safety 

margin to the demanding requirements on the EDG. 

The flow rate uncertainty range for each configuration 

of SI pumps represents the minimum to maximum rated 

flows of each pump type given in the FSAR [6].  The 

GPM regression will be explicitly performed on delay 

time and SI flow rate because these are the two 

dominant parameters affecting the clad temperature and 

the downcomer and core collapsed water levels during 

reflood. 

The uncertainty ranges for RWT water temperature 

and SIT parameter uncertainties, initial water inventory, 

water temperature, and gas pressure, are the technical 

specification ranges for the components in the FSAR.  

During operation of the plant, these parameters may 

fluctuate with the ambient environment and the plant 

procedures require personal to periodically verify 

measured values do not exceed the specifications.  

These variables will be treated implicitly in the noise 

term of the GPM because they are related to the key 

safety systems, SITs and HPSI/LPSI, but only introduce 

minor variations in mass and energy balance during 

simulations with respect to nominal conditions. 

The MARS code allows uncertainty multipliers to be 

applied to heat transfer coefficients calculated by the 

heat transfer modes.  We assume a normal distribution 

with 5% standard deviation for the transition boiling, 

film boiling and vapor heating multipliers.  Clad heatup 

occurs during reflood when these three heat transfer 

modes are active.  A figure-of-merit, the reflood PCT, is 

sensitive to the heat transfer modeling.  The decay heat 

is calculated using the ANS79-1 standard and the 

nominal rated power of 2815 MWt.  The decay heat 

model uncertainty is modeled by assuming a normal 

distribution with mean of 1.02 and 3% standard 

deviation for the fission product yield factor.  These 

input parameters will also be treated implicitly in the 

noise term of the GPM to demonstrate how to 

incorporate code parameter uncertainties into the 

analysis. 

The training set for surrogate construction should be 

a space-filling design to provide adequate coverage of 

the input parameter space.  We sample in a two-stage 

approach because the EDG delay time and SI flow rate 

are the explicit regression variables while the RWT 

water temperature, SIT parameters, and MARS code 

parameters are modeled implicitly as the noise term in 

the GPM.  For the two-dimensional input space of EDG 

delay time and SI flow rate, the unscented transform 

with random orthogonal matrix (UTROM) sampling 

algorithm [7] is used to generate 100 data points for 

each configuration of SI pumps sampled between the 

minimum and maximum rated and the EDG delay time 

uncertainty range for a total training set size of 300 data 

points.  The UTROM experiment design uses eigen 

decomposition of a randomly generated 50x50 matrix to 

obtain a random orthonormal basis whose projection 

onto the two-dimensional input space when properly 

scaled provides excellent space-filling properties and 

randomness similar to Latin hypercube designs.  The 

second stage of sampling is Monte Carlo sampling of 

the remaining 8 input variables for every point in the 

two-dimensional input space.  By Monte Carlo 

sampling, the “measurement” noise of each training 

point is a random contribution from the 8 probability 

density functions (pdfs). 

Every MARS simulation gives a time history of the 

clad temperatures and the downcomer and core 

collapsed water levels.  Figure 5 shows the time 

histories for the 100 simulations for configuration 2 

with 1/2 LPSI pumps injecting.  Also shown are the 

sampled SI flow rates and delay times.  From the time 

histories, the PCT and the minimum downcomer and 

core collapsed water levels during reflood are extracted 

from the time histories becoming the output y values in 

the GPMs. 

 

Input Uncertainty Distribution Range or μ+/-σ

Sequence Timing

EDG Delay Time Uniform 15 s - 600 s

Safety Injection Flow Rate

Configuration 1:

 2/2 HPSI to 3/3 CL Uniform 80 kg/s - 115 kg/s

Configuration 2:

 1/2 LPSI to 1/3 CL Uniform 135 kg/s - 170 kg/s

Configuration 3:

 1/2 HPSI to 3/3 CL & Uniform 190 kg/s - 215 kg/s

 1/2 LPSI to 1/3 CL

RWT Water Temperature Uniform 276 K - 323 K

SIT Technical Specification Ranges

Initial Water Volume Uniform 51 m3 - 54.2 m3

Gas Pressure Uniform 3.992 MPa - 4.42 MPa

Water Temperature Uniform 280 K - 320 K

T/H Code Parameters

Heat Transfer Coefficient Multipliers:

Transition Boiling Normal 1.0 +/- 5%

Film Boiling Normal 1.0 +/- 5%

D-B Vapor HT Normal 1.0 +/- 5%

Decay Heat:

Fission Product Yield Factor Normal 1.02 +/- 0.03
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Fig. 5. MARS simulation data for 1/2 LPSI pumps injecting to 

cold leg 1B for LBLOCA.  Clad temperatures are from axial 

node 9 of the hot pin. 

 

2.5 GPM Results 

 

Using the 300 data point training set, GPM 

parameters were learned using the leave-one-out 

method with Gaussian priors implemented in the GPML 

code [2].  Table II lists the learned parameter values for 

GPMs predicting PCT of the hot pin, minimum 

downcomer collapsed water level, and minimum core 

collapsed level during reflood.  A surrogate for the PCT 

of the core averaged fuel channel is also provided.  The 

maximum linear heat generation rate for the core 

averaged channel is 8.25 kW/ft compared to 13.9 kW/ft 

for the hot pin. 
 

Table II: GPM Parameter Values 

 
 

Figures 6 - 9 are the surface plots for the GPM mean 

functions compared to the training data. The mean 

function surfaces can be interpreted as response 

surfaces in the context of conventional regression 

analysis. By visual inspection the nonlinear surfaces 

appear to be smooth interpolants between the training 

points and overfitting does not appear to be an issue.  

The spread or noise of the data is the contribution from 

the 8 inputs implicity modeled in the GPM as 

measurement noise. 

 

 
 

Fig. 6. GPM for core average channel reflood PCT. 

 

 

 
 

Fig. 7. GPM for hot pin reflood PCT. 

 

 
Fig. 8. GPM for minimum downcomer collapsed water level 

during reflood. 

 

 
 

Fig. 9. GPM for minimum core collapsed water level during 

reflood. 

 

2.6 Estimating Success Criteria Safety Margin 

 

Figures 10 - 13 show the 95% probability intervals 

for PCT and water levels predicted by the GPMs for the 

1/2 LSPI pump injecting to 1/3 CLs configuration, the 

LBLOCA success criteria definition, as a function of 
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EDG delay time.  The LPSI flow rate is held at the 

mean value between the minimum and maximum rated 

flow to allow for easier visualization.  The 95% 

probability intervals are obtained from Eqs. (2) and (3) 

and represent the uncertainty of the safety parameters 

due to the uncertainty of the implicit variables, the 

technical specifications and thermal hydraulic code 

parameters.  The MARS training set data for the 

configuration 2 are overlain for reference. 

 

 
 

Fig. 10. PCT uncertainty bounds for core average channel. 

 

 
 

Fig. 11. PCT uncertainty bounds for hot pin. 

 

 
 

Fig. 12. Minimum downcomer collapsed water level 

uncertainty bounds. 

 

 

 
 

Fig. 13. Minimum core collapsed water level uncertainty 

bounds. 
 

The GPM predicts the 50/97.5 percentiles of 448 

K/692 K for the hot pin PCT for delay times of 30 s – 

35 s, the current EDG loading sequence technical 

specification for the LPSI pump.  The GPM only 

provides an estimate of the true PCT pdf subject to all 

uncertainties and is assumed to be the normal 

distribution provided by the GPM.  The 1477 K limit is 

over 8 standard deviations from the mean and so 

probability of exceeding the acceptance criteria is 

infinitesimal.  The success criteria of the UCN3&4 

LBLOCA ET/FT model for the injection phase are 

conservative and significant safety margin exists for the 

specified safety system configuration and related 

technical specifications. 

Closer examination of Figs. 10 and 11 reveals the 

PCT is relatively constant for delay times from 15 s to 

200 s.  The minimum downcomer and core levels are 

also approximately constant from 15 s to 200 s.  For 

delay times greater than 300 s, the core level can reach 

the bottom of the fuel and the whole core will be under 

two-phase flow conditions during reflood leading to 

film boiling and vapor heating heat transfer regimes 

resulting in heatup of the fuel and clad. These results 

suggest the safety margin is insensitive to the loading 

sequence technical specification for LPSI loading 

between 30 s and 3 minutes.  Cold start, short warmup 

time, and rapid loading of EDG during regular testing 

and unplanned starts is known to cause irregular wear 

and premature ageing on engine components reducing 

the reliability of the EDG and has been a long standing 

safety concern in the nuclear industry.  The LBLOCA is 

the most demanding event that requires prompt SI so 

the stringent loading sequence technical specification 

and testing programs are directly related to the 

LBLOCA mitigation but comes at the cost of decreased 

EDG reliability increasing risk of other events such as 

loss-of-offsite power and station blackout.  The plant 

operators could optimize the loading sequence to 

minimize engine wear using a mission time of three 

minutes for warmup and loading without comprising 

safety margin with respect to LBLOCA. 
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3. Conclusions 

 

A new methodology to estimate safety margin of a 

NPP has been proposed and demonstrated for best 

estimate simulation of LBLOCA in support of Level 1 

PSA success criteria definitions.  The methodology 

simultaneously considers sequence timing, safety 

system configuration, technical specifications, and code 

model parameter uncertainties.  A key aspect of the 

methodology is the input parameter space is partitioned 

into two subsets of inputs, explicit regression variables 

consisting of the dominant input uncertainties that are 

the fundamental drivers of thermal hydraulic behavior 

of the transient and implicit noise variables.  A 

Gaussian process model performs regression on the 

explicit regression variables and output uncertainty is 

quantified by a measurement noise term representing 

the contribution of the implicit input noise variables to 

local variation or uncertainty of the safety parameter.  

This approach retains high fidelity treatment of all input 

uncertainties during best estimate simulation of the 

transient, but allows the analyst to focus regression 

analysis on the most important application specific 

parameters thereby overcoming the curse of 

dimensionality inherent to the analysis of complex 

systems. 
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