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1. Introduction 
 

The nonlinear coarse-mesh finite difference method 
with two-node local problem (CMFD2N) [1] is proven 
to be unconditionally stable for neutron diffusion 
eigenvalue problem. The explicit expression of current 
correction factor (CCF) has been derived based on the 
analytic two-node nodal method (ANM2N) and Fourier 
analysis is applied to the linearized algorithm [2]. There 
have been several successes applying the Cefus and 
Larsen’s approach to algorithms with fixed source 
neutron diffusion problems [3-8]. It is shown that the 
analytic convergence rate of CMFD2N for neutron 
diffusion eigenvalue problem obtained by Fourier 
analysis compares very well with the numerically 
measured convergence rate [9].  
 

2. Computational methodology 
 

The model problem is a 1-D 2-G neutron diffusion 
eigenvalue problem in an infinite homogeneous 
medium. The neutron diffusion equation for the model 
problem is written as: 
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The cross section data set used for the model 

problem is taken from the composition #4 base cross 
section of the NEACRP LWR transient benchmark [10]. 
The boundary conditions are periodic for both 
boundaries. 

The derivation of the two-node analytic nodal kernel 
can be easily found in the literature [11]. In the 
CMFD2N algorithm for 1-D 2-G model problem, the 
CCF for each node interface, ,

ˆ
g iD , can be defined by 

the following equation 
 2

, , 1 , , , 1 ,
ˆ( / )( ) ( ).ANM N

g i g g i g i g i g i g iJ D h D          (2) 

 
It is possible to directly obtain CCFs for each local 
problem from CMFD2N variables by manipulating net 
current solution of ANM2N, as following equation 
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where n  is an iteration index, and ( 1) ( 1,2,3,4)n
pC p   is 

a coefficient dependent on buckling in ( 1)n th  iteration. 
The global coupled coefficient matrix for CMFD2N 

can be derived by integrating Eq. (1) and applying 
CCFs of Eq. (2). 
 

3. Convergence analysis 
 
In this section, numerically measured convergence 

rates and analytically derived convergence rates will be 
compared each other.  
 
3.1. Numerical convergence analysis 
 

It is empirically known that the convergence rate of 
the CMFD2N algorithm is governed by the 
convergence rate of CCFs, i.e., once the CCFs converge, 
then the solution will converge in one iteration [6]. The 
numerical convergence rate can be measured by the 
following formula. 
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Fig. 1 presents numerically measured convergence 

rates. It should be noted that, when the number of nodes 
is even, the convergence rate is independent of the 
number of nodes, while it depends on the mesh size. In 
case of odd number of nodes, the convergence rate 
depends not only on the mesh size but also slightly on 
the number of nodes. Interestingly, however, it 
converges to that in the even number of nodes case as  

 

 
Fig. 1. Numerical Convergence Rate 
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3.2. Analytic derivation of convergence rate 
 

It is interesting to note from the numerical 
measurements that the convergence rate of CMFD2N is 
closely related with mesh size. Therefore, in this section, 
we are interested in the relationship between the 
convergence rate and the mesh size. In the numerical 
measurements, the outer and inner iterations of the 
power method with CMFD matrix are fully converged 
in order to obtain a consistent convergence rate with 
analytical approach, which means that the numerically 
obtained eigenvalue and eigenvector set actually 
correspond to the exact ones of CMFD matrices with 
the corresponding CCFs. This property makes it 
possible to generalize the convergence analysis from a 
small to a large number of nodes because the algorithm 
is only dependent on the mesh size but not on the total 
problem size. For a small matrix, it is possible to derive 
eigenvalue and eigenvector using symbolic 
manipulations. Eq. (5) is a generalized form of 
eigenvalue and eigenvector for the problem whose total 
number of nodes is only two. 
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First-order perturbations of ( )

g,
n
i , ( )

,
ˆ n

g iD , and ( )n
pC ( 1, 2g  , 

1, 2,3, 4p  ) are introduced because they depend on the 
iteration steps: 
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Substituting Eq. (6) into Eqs. (3) and (5), and 

dropping the 2( )O   terms yields the linearized equations.  
If the dimension of the flux vector is N, there are N 

independent bases for the flux vector. The flux vector 
can be expanded by the N eigenvectors mi xe   
( 0,1,..., 1),m N   corresponding to the eigenmodes 

2 / ( )m m Nh  . By using the N base vectors, the 

following Fourier ansatz can be introduced [8]. 
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For 0m  , the linearized algorithm yields 0 0  . 

For 1 1m N   , the linearized algorithm yields  
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and after some manipulations, we obtain 
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where 0  is a converged second harmonic buckling: 
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The analytic convergence rate of the linearized 

algorithm for this problem is governed by maximum 

m . The analytic convergence rate for N=2 can be 

simplified as 
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Without loss of generality, it is possible to write an 

analytic convergence rate for three nodes as Eq. (12). 
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4. Results 

 
In Fig. 2, the lines and the dots represent analytic and 

numerical convergence rates, respectively. 
 

 
Fig. 2. Numerical and Analytic Convergence Rates for Two 
and Three Nodes 

 
It should be noted that the numerically measured 

convergence rate and the analytically derived 
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convergence rate match each other exactly for the two-
node and three-node problems, and also that the 
convergence is unconditionally stable for all mesh sizes. 

Following analysis can be directly applied to three 
nodes problem. In the two nodes problem and the given 
cross section data, the maxh  can be obtained as 6.904, 

and the corresponding convergence rate is 0.155. In Fig. 
3, the convergence rate of the CMFD2N algorithm is 
plotted as a function of  0( , )h . As shown in the figure, 

the convergence rate increases first and decreases after 
the maximum point as h  and/or 0  increases. The 

maximum convergence rate is always 0.155 and 
satisfies 0 2.864h   regardless of cross section data. 

 
Fig. 3. Convergence rate of two nodes versus 0( , )h  

 
5. Conclusions 

 
The convergence behavior of the nonlinear coarse-

mesh finite difference method with two-node local 
problem solved by ANM2N kernel for the 
homogeneous one-dimensional two-group neutron 
diffusion eigenvalue problem is theoretically analyzed. 
It is numerically and analytically proven that the 
convergence rate for CMFD2N algorithm is 
independent of the whole problem size but dependent 
on only the mesh size, and also unconditionally stable 
at least for the given problem. The convergence rate of 
the CMFD2N algorithm is explicitly calculated by 
Fourier analysis. From the form of the analytically 
calculated convergence rate, it is possible to know that 
the convergence rate is dependent on a product of the 
mesh size and the converged second harmonic buckling, 
which is defined by cross section data. The theoretically 
calculated convergence rate is identical with the 
numerically measured convergence rate. It is 
analytically proven that the convergence rate is 
unconditionally stable for the neutron diffusion 
eigenvalue problem. As further study, the new approach 
developed in this paper for the analysis of the 
convergence rate of CMFD2N algorithm will be 
applied to one-node CMFD eigenvalue problem. 
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