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1. Introduction 

 

The core operating limit supervisory system (COLSS) 

is an application program implemented into the plant 

monitoring system (PMS) of nuclear power plants 

(NPPs). COLSS aids the operator in maintaining plant 

operation within selected limiting conditions for 

operation (LCOs), such as the departure from nucleate 

boiling ratio (DNBR) margin and the linear heat rate 

(LHR) margin. In order to calculate above LCOs, the 

COLSS uses core averaged axial power distribution 

(APD). 40 nodes of APD is synthesized by using the 5-

level in-core neutron flux detector signals based on the 

Fourier series method in the COLSS. But current APD 

synthesis method has inaccuracies at the end of cycle 

(EOC), which lowers the efficiency of monitoring the 

LCOs. The following is a study on improving the 

accuracy of APD synthesis. 

 

G. C. Lee et al. (2002) [1] proposed the artificial neural 

network (ANN), which is an efficient and reliable 

algorithm for input/output mappings [2], to synthesize 

the APD in core protection calculator system (CPCS) in 

the optimized power reactor 1000 (OPR1000) NPPs. 

They concluded that the ANN method is about twice as 

accurate as the conventional APD synthesis method of 

CPCS. 

 

In this study, we proposed the ANN method with 

simulated annealing (SA), which is well-known global 

optimization solution [3], to increase the accuracy of 

APD synthesis in COLSS. We applied this method to 

COLSS of OPR1000 and the advanced power reactor 

1400 (APR1400) NPPs. 

   

2. Current Method 

 

In case of APR1400 plant, it has 61 in-core neutron 

flux detectors which can measure the signals of axial 5-

level each. The signals of 61 in-core detectors are 

averaged for each level and Fourier series method is used 

to synthesize the 40 nodes of APD from the averaged 5-

level signals. APD is synthesized using 5th order Fourier 

series function as Eq. (1) 

 

𝑃𝑎(𝑧) =  ∑ 𝑎𝑖𝑠𝑖𝑛 {𝑖𝜋𝐵 (𝑧 +
𝛿

𝐻
)}5

𝑖=1 ,     0 ≤ 𝑧 ≤ 1   (1) 

 

where 𝑃𝑎(𝑧) is the synthesized axial shape; 𝑎𝑖 is Fourier 

coefficient; 𝐵  is buckling or extrapolated boundary 

condition; 𝐻 is core height; 𝛿 is extrapolation distance;  

𝑧  is an axial elevation in fraction of core height. 

 

To evaluate the accuracy of APD synthesis, the axial 

shape root-mean-square (RMS) error is used as follows: 

 

RMS error = √ 1
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∑ (

𝑃𝑖
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𝑃
𝑖
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2
𝑁𝑛𝑜𝑑𝑒
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where 𝑁𝑛𝑜𝑑𝑒  is total number of axial nodes for 

calculating the RMS error; 𝑃𝑖
𝐹𝑜𝑢𝑟𝑖𝑒𝑟  is the synthesized 

power by Fourier series; 𝑃𝑖
𝑅𝑒𝑓.

 is the reference power by 

the nuclear design code. 

 

Fourier series method is a very good way to represent 

a wave-like shape, but it has a limitation for calculating 

all shapes of the APD: cosine shape, flat shape, saddle 

shape, and those shapes with top/bottom peaked. Table I 

shows an axial shape RMS errors of design data for Shin-

Kori unit 3 cycle 1. The mean values of this RMS errors 

are getting increased as the burn-up increases. 

 

Table I: 

Axial shape RMS errors using the current method  

 

Fourier series 

method 

Time in Life (TIL) 

BOC IOC MOC EOC 

Number of data 1145 1162 705 772 

Axial shape 

RMS error 

(%) 

Min. 1.025 0.857 1.616 2.195 

Max. 2.988 3.548 6.449 7.870 

Mean 1.637 1.612 3.713 5.018 

 

where BOC is the beginning of cycle; IOC is the 

intermediate of cycle; MOC is the middle of cycle. 

 

3. Proposed Method 

 

We proposed ANN with SA method instead of Fourier 

series for the APD synthesis in COLSS. Proposed 

method makes the mean of axial shape RMS errors not 

increasing, even though the burn-up increases. 

 

3.1. Artificial neural network (ANN) 

 

We used the feed-forward neural network trained by 

back-propagation. Layers of the network are consisted of 

3 layers; input layer, one hidden layer, and output layer. 

The input layer has 6 nodes; the averaged 5-level in-core 

detector signals, which are normalized so that the sum is 
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one, and one constant node. The hidden layer has 26 

nodes; 25 intermediate nodes and one constant node. We 

used 0 value for all constant nodes of input/hidden layer 

in order to avoid domination by constant node, but they 

can be changed for the accuracy of APD synthesis. The 

output layer is consisted of 40 nodes of APD as shown in 

Fig. 1.  

 

 
 

Fig. 1. Structure of ANN for APD synthesis 

 

The activation function that we used for APD 

synthesis was hyperbolic tangent for the hidden and 

output layers because hyperbolic tangent is differentiable 

for back-propagation and is a sigmoid function for 

preventing the divergence during ANN training. 

 

For training the network, 200 case data are randomly 

sampled among the all of 4652 cases from the design data 

for Shin-Kori unit 3 cycle 1.  

 

3.2. Simulated annealing (SA) 

 

SA is used to find the global optimum of the weighting 

factors of the network. At first, the weighting factors are 

randomly chosen within given range to initiate the 

training of the network, and then local optimum values 

of the network is calculated by the back-propagation. By 

the metropolis criterion, this local optimum is selected or 

randomly changed again within the distance for SA. 

Finally the global optimum of weighting factors is 

calculated as the back-propagation by ANN and update 

of weighting factors by SA are performed repeatedly. 

 

3.3. Test results 

 

We applied the proposed method to the design data for 

Shin-Kori unit 3 cycle 1. Table II shows the axial shape 

RMS errors of the proposed method. The equation of the 

RMS error is almost same with Eq. (2), but 𝑃𝑖
𝐹𝑜𝑢𝑟𝑖𝑒𝑟  is 

replaced with 𝑃𝑖
𝐴𝑁𝑁 . Compared with the results of the 

current method in the Table I, the mean values of axial 

shape RMS errors are reduced by 0.266 %, 0.208 %, 

1.591 %, and 3.403 % at BOC, IOC, MOC, and EOC, 

respectively. The mean values of the RMS errors are 

maintained at a similar level as at BOC for a whole cycle. 

 

Table II: 

Axial shape RMS errors using the proposed method  

 

ANN with SA 

method 

TIL 

BOC IOC MOC EOC 

Number of data 1145 1162 705 772 

Axial shape 

RMS error 

(%) 

Min. 0.546 0.397 1.283 0.712 

Max. 3.698 4.054 3.886 4.435 

Mean 1.371 1.404 2.122 1.615 

 

Fig. 2 shows the histogram of axial shape RMS errors 

of the Fourier series method vs. the ANN with SA 

method at EOC for Shin-Kori unit 3 cycle 1. In this result, 

we could see that the proposed method is more accurate 

than twice compared to the current method. 
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Fig. 2. Histogram of axial shape RMS errors  

of the current method vs. the proposed method at EOC  

 

4. Conclusion 

 

We proposed the artificial neural network (ANN) with 

simulated annealing (SA) method instead of Fourier 

series method to synthesize the axial power distribution 

(APD) of COLSS. The proposed method is more 

accurate than the current method as the results of the 

axial shape RMS errors. This proposed method improves 

the accuracy of the APD synthesis and the efficiency of 

monitoring the LCOs. 
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