
Transactions of the Korean Nuclear Society Autumn Meeting
Pyeongchang, Korea, October 30-31, 2014

Finite test sets development method for test execution of safety critical software

Sung Min Shin a, Hee Eun Kim a, Seung Jun Lee b, Hyun Gook Kang a*

a Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic
of Korea

b Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong,
Daejeon, 305-353, Republic of Korea

*Corresponding author: hyungook@kaist.ac.kr

1. Introduction

These days, most of Instrumentation and Control
(I&C) systems in Nuclear Power Plants (NPP) are being
digitalized in response to the extended features of
digital systems and difficulties of supplying analog
components. Digital I&C systems can be divided into
two: microprocessor based system and Programmable
Logic Device (PLD) based system. The PLD based
system provide more reliable performance than
microprocessor based one because it can process the
data in parallel and tolerance to environmental
conditions. The main characteristic of this PLD system
is indefinite and cyclic execution. It reads inputs,
computes new states, and updates output for each scan
cycle.

Korea Nuclear Instrumentation and Control System
(KNICS) has recently developed a fully digitalized
Reactor Protection System (RPS) based on PLD. As a
digital system, this RPS is equipped with a dedicated
software. The Reliability of this software is crucial to
NPPs’ safety where its malfunction may cause
irreversible consequences [1] and affect the whole
system as a Common Cause Failure (CCF). To
guarantee the reliability of the whole system, the
reliability of this software needs to be quantified.

There are three representative methods for software
reliability quantification, namely the Verification and
Validation (V&V) quality-based method, the Software
Reliability Growth Model (SRGM), and the test-based
method [2]. The V&V method has been utilized for this
safety critical software [3-5], while SRGM has
difficulties because of lack of failure occurrence data on
developing phase. For the safety critical software,
however, failure data cannot be gathered after
installation in real plant when we consider the severe
consequence. Therefore, to complement the V&V
method, the test-based method need to be developed.

Some studies on test-based reliability quantification
method for safety critical software have been conducted
in nuclear field [6-9]. These studies provide useful
guidance on generating test sets. An important concept
of the guidance is that the test sets represent
'trajectories' (a series of successive values for the input
variables of a program that occur during the operation
of the software over time) in the space of inputs to the
software [7]. Actually, the inputs to the software
depends on the state of plant at that time, and these
inputs form a new internal state of the software by

changing values of some variables. In other words,
internal state of the software at specific timing depends
on the history of past inputs. Here the internal state of
the software which can be changed by past inputs is
named as Context of Software (CoS). In a certain CoS,
a software failure occurs when a fault is triggered by
some inputs. To cover the failure occurrence
mechanism of a software, preceding researches insist
that the inputs should be a trajectory form. However, in
this approach, there are two critical problems. One is
the length of the trajectory input. Input trajectory should
long enough to cover failure mechanism, but the
enough length is not clear. What is worse, to cover
some accident scenario, one set of input should
represent dozen hours of successive values. The other
problem is number of tests needed. To satisfy a target
reliability with reasonable confidence level, very large
number of test sets are required. Development of this
number of test sets is a herculean task. Therefore,
another approach to cover software context without
trajectory form of input is needed.

This study proposed a test set generation method for
PLD based safety critical software without trajectory
form of input sets. This method also considered the test
coverage which was hard to deal with trajectory form
based approach. To substitute trajectory form of input
sets, possible ranges of variables for each situation
should be identified. For this purpose, assigned range of
each variable, logical relations between variables, plant
dynamics under certain situation, and characteristics of
obtaining information of digital device are considered.
By considering above factors a CoS and an input set can
be expressed as combination of single values not series
of successive values of variables related. When the CoS
and input set are expressed as combination of single
values, testing time may take only few subsecond for
one set. By adopting this method, for a simple and
straightforward software like RPS, even exhausted test
would be conducted.

To describe the proposed method, basic concepts of
the method and dependence between variables are
explained in chapter 2. In chapter 3, the feasibility of
the proposed method is shown by adopting one trip
logic of RPS

2. Methodology for finite test set development

2.1 Basics of proposed method

Transactions of the Korean Nuclear Society Autumn Meeting
Pyeongchang, Korea, October 30-31, 2014

The output of software can be altered by H/W

conditions or CoS, though identical inputs are applied
[7]. In this study, however, the effect induced by the
hardware conditions of running software such as aging
of electric elements are not considered. This study is
just considering logical errors inside of software. When
the effect of hardware is excluded and identical input is
applied to the identical CoS, same output will be
reproduced. Thanks to this deterministic characteristic
of software there is no need to conduct repeated test for
one test set.

Figure 1 Components of software test

The fundamental concepts of proposed method are

like below. Practically, a CoS consist of certain values
of corresponding variables. Here the variables
composing CoS, generated and saved ones at the last
scan time inside of the software, are named as Context
Variables (CVs). If the several different past input
sequences lead the same context, the last CoSs are
regarded as identical ones. In this point of view, the past
input sequence has no meaning. To find out all possible
CoSs in systematic way, what really mattered is the
possible range of each variable mutually. When the
possible range of each CV is identified, all realizable
contexts can be expressed by combinations of values of
each CV.

The variables composing input sets, newly acquired
ones for current scan time from outside of software, are
named as Input Variables (IVs). Based on a certain CoS,
each IV also has its limited range. Actually, some IVs
represent values of process parameters which are
converted through Analog to Digital Converter (ADC).
Because of continuity of process parameter and the
converting characteristic of ADC such as scan interval,
the possible difference of sequent value of an IV is
limited [10]. Except those variables representing
process parameters, the others are just Boolean type of
variables in general. Their possible states are true or
false, so it doesn't matter to set input sets. When the
possible ranges of each IV is identified, similar to CVs,
input sets can also be expressed by combinations of IVs

2.2 Variables for CoS and input set

As mentioned above, a CoS and the input set to this
CoS can be expressed as the form of combination of
values related. For this approach, the variables for CoS
and input set should be classified first. And then all
possible CoSs, without omission, should be investigated.
Thereafter, based on each CoS, input sets can be
developed.

The variables for CoS and input set can be
discriminated according to the definition of CV and IV
described in 2.1. The variables acquired from outside of
software for this scan time are IVs, and the variables
saved inside of software at the last scan time are CVs.

Figure 2 Process of test set development

To investigate all possible CoSs, a concept of

Reference Context Variable (RCV) is adopted. RCV is
like a flag to restrict the possible ranges of other CVs.
For a better understanding, a variable representing
process parameter of previous scan time, such as
pressure or temperature, can be an example of this RCV.
In normal operation, trip setpoint which is one of the
CVs cannot cross the previous pressure or temperature
[11]. To take certain value of RCV, its original range
and resolution should be identified. The assigned range
of a RCV can be deduced from maximum and
minimum value of it, and the resolution will be the
assigned range divided by assigned memory for this
variable.

Figure 3 Dependency between RCV and other variables

When a value of RCV is set, the possible ranges of

other CVs are limited because of their dependencies to
this RCV as described before. Basically, here the
dependency is logical relation between variables
programed in the software. If some CVs have no
relation with RCV, all assigned range need to be
considered. After choosing the RCV, by changing the
value of this RCV from minimum to maximum over the
assigned range, possible ranges of other dependent CVs
associated with a certain RCV value can be identified.
Consequently, mutually possible range between CVs
can be checked, and by using the values in the ranges
identified, the possible CoSs can be formed.

Transactions of the Korean Nuclear Society Autumn Meeting
Pyeongchang, Korea, October 30-31, 2014

In regards to IVs, except some Boolean type of

variables such as permission and reset, remaining IV is
also representing process parameter because PLD is the
system which monitors and compares certain parameter
continuously under certain conditions. Based on the
RCV, the value of this IV cannot go further beyond the
certain deviation during scan interval because of its
physical continuity. The possible deviation can be
determined in consideration of plant dynamics and
characteristics of ADC [10]. Plant dynamics is
associated with slope of transition, and the
characteristic of ADC is associated with scan interval.
The consecutive value can go further from the previous
value, when the process parameter changes drastically
and it is scanned sparsely as well. To get the possible
drastic slope, simulation code for accident scenario can
be utilized.

For the test, when one set of CoS is formed, based on
this CoS, all logically possible input sets should be
applied, respectively. And then to one another CoS, all
the other possible input sets to this new CoS should be
applied again. The important thing here is that test input
does not have to include lengthy past input sequence
but can be expressed as a combination of variables
related, thus the test process can be simplified.

2.3 Test set development

When the dependencies between variables are
considered, the numbers of test sets for a certain value k
of RCV and total test sets can be expressed like
equation (1) and (2), respectively.

௞ܰ ൌ ൥൝ෑܰ൫ܥ ௜ܸ௡௜൯

௡

௜ୀଵ

ൈෑܰቀܥ ௗܸ௘௣௜
ቚܴܥ ௞ܸቁ

௠

௜ୀଵ

ൡ

ൈ ൝ෑܰሺܫ ௜ܸ௡௜ሻ

௟

௜ୀଵ

ൈෑܰሺܫ ௗܸ௘௣௜
ܥܴ| ௞ܸሻ

௞

௜ୀଵ

ൡ൩														ሺ1ሻ

௧ܰ௘௦௧ ൌ ෍ ௞ܰ

௠௔௫

௞ୀ௠௜௡

																																																											ሺ2ሻ

Where,
ܰሺ݈ܾ݁ܽ݅ݎܽݒ௜|ܴܥ ௞ܸሻ: Number of possible states of
variable i under certain value k of the RCV
ܥ ௜ܸ௡௜ : Independent context variable

ܥ ௗܸ௘௣௜
 : Dependent context variable

ܫ ௜ܸ௡௜ : Independent input variable

ܫ ௗܸ௘௣௜
: Dependent input variable

௧ܰ௘௦௧: Total number of tests

When the dependencies between variables are

considered, the number of total test sets can be reduced
a lot compare with the case which is not consider the
dependency because, in general, the possible range of
each CV under certain situation may be restricted to

some portion of assigned range. However, the total
number of test sets might still too big to test. Main
contributor for this big number of test sets might be the
resolution of RCV. Basically, to control the system
precisely, resolution of variables are very fine. On
account of this fine resolution, the total number of test
sets may be thousands times more than the coarse one.
If the total number of test sets are too big, total testing
time may take few months or more even though one test
takes few subsecond. This is not practical. In such cases,
there is no advantage comparing with the trajectory
form of input based approach. There are two means to
reduce the number of test sets in reasonable way
because this approach considers logical relation
between variables.

First mean for test sets reduction is application of
safety point of view. In the safety point of view, failure
is incorrect output when a demand comes. So, some
situations which not require safety action such as trip
signal generation are out of interest. In this research, it
is distinguishable whether some situation demand safety
action or not because the logical relation between
variables and the range of each variable are being
considered. When only the cases requiring safety action
are extracted, total number of test sets can be reduced.

The second mean is equivalence partitioning.
Equivalence partitioning is the process placing possible
test sets into classes [12]. Usually it is the input that is
partitioned. However, according to the software, output
also can be partitioned. In this study, to cover all CoS,
input sets can be partitioned. However, if necessary,
CoS also can be partitioned. The criteria for partitions
are usually derived from expected result of the input
specified in requirement. Each partitioned shall contain
a range of values, chosen values in a partition can
reasonably be expected to be treated by the software in
the same way [a]. Therefore, when one representative
value is applied, all values in this partition are
considered as covered. In this manner, total number of
test sets can be reduced but exhausted test cannot be
accomplished.

3. Application to the RPS software

3.1 Variables in objective trip logic

The proposed method was applied to the RPS
software to show its feasibility. For this purpose, most
complicated trip logic was selected and the variables of
it were investigated. In RPS, there are 19 trip logics. All
the logics can be divided into 3 categories according to
their setpoint type [1]: fixed trip setpoint, variable trip
setpoint by manual reset, and variable trip setpoint by
automatic rate-limiting. Variable type logics are more
complicate than fixed one because, along with the name,
its setpoint might be changed. Among variable type of
trip logics, only pressurizer pressure low trip (PZR PR
Lo Trip) logic has operator bypass function additionally.
Thus, this trip logic is selected as the objective for
application because it is considered as most
complicated one.

Transactions of the Korean Nuclear Society Autumn Meeting
Pyeongchang, Korea, October 30-31, 2014

Fig. 4 shows the set point variation logic for PZR PR

Lo Trip [11]. Basically, this logic will generate a trip or
pretrip signal when the system pressure decreases and
reaches to the trip or pretrip setpoint. However, these
setpoints can be changed depending on the system
pressure and operator reset as shown in Fig. 4.

When system pressure rises away from setpoint,

setpoint will chase the system pressure after 400 psi.
But when the system pressure falls toward the setpoint,
the setpoint will not be changed. To drop the setpoint,
operator should generate reset signal. When the reset
signal is generated, the trip setpoint will be drop 400 psi
from the system pressure at that timing and cannot be
changed again for 10 sec. If the system pressure drops
under 400 psi, bypass is permitted. If the operator make
bypass signal when bypass is permitted, trip logic will
be bypassed and cannot make trip signal. And when
system pressure exceed 500 psi, bypass permission will
be removed automatically.

Among the variables inside of PZR PR Lo Trip logic,
when the variables for mode selection such as test and
real mode, the fixed constants, and the intermediate
ones which are automatically calculated according to
input values are excluded, remaining variables can be
summarized like table 1

Table 1 Summarized variables in PZR PR Lo trip logic

Context variable Input variable

name Type name Type

Previous pressure WORD Current pressure WORD

Trip setpoint WORD Bypass from MCR BOOL

Rest delay time WORD Bypass from RSR BOOL

 Reset from MCR BOOL

 Reset from RSR BOOL

 Module error BOOL

 Channel error BOOL

3.2 Dependency in objective trip logic

Among CVs, the value of previous pressure can be a
RCV. Minimum, maximum value, assigned memory,
and dependencies of other variables to this RCV are
shown in table 2. This value is obtained by dividing the
difference between maximum and minimum value by
assigned memory.

Table 2 Dependency of each variable to previous pressure

Base
Context
variable

Previous pressure
Min (psi) Max (psi) Memory (Word)

100 2,940 26,400

Dependent
variable

Trip setpoint (CV)
Current pressure (IV)

Independent
variable

Reset delay time (CV)

Module error (CV)

Channel error (CV)

Bypass from MCR (IV)

Bypass from RSR (IV)

Reset from MCR (IV)

Reset from RSR (IV)

s
Dependent variables to the previous pressure (RCV)

have relations like below. Basically, trip setpoint cannot
exceed previous pressure and cannot be less than 400
psi from the previous pressure. And the programed
minimum and maximum value of trip setpoint are 300
and 1780 psi, so it will be readjusted as these
programed values even if they are calculated differently
based on system pressure. As mentioned above,
dependent input variable (current pressure) cannot
exceed certain deviation. Kang [10] investigated the
possible deviation of system pressure for sequent scan
timing in consideration of plant dynamics under several
hole sizes of Loss of Coolant Accident (LOCA)
scenario and ADC characteristics about scan time and
memory. Currently, processing time of BP should be
shorter than 50 ms, so 50 ms can be considered as the
scan interval. When we assume that the biggest hole
size (0.7610 m) of LOCA scenario is the accident which
can make most drastic pressure change and the memory
of ADC is 12 bit, according to the reference, the current
pressure can be dropped about 3.3 psi from the previous
pressure. For the possible deviation of current pressure,
this result can be simply quoted to calculate the number
of finite test sets. All the other independent variables,
except reset delay time, are Boolean type. These values
have just two states. The resolution of reset delay time
will be 50 ms corresponding to the scan interval.

Figure 4 Trip logic for pressurizer low pressure trip

Transactions of the Korean Nuclear Society Autumn Meeting
Pyeongchang, Korea, October 30-31, 2014

3.3 Finite test sets

The total numbers of test sets are calculated and
shown in figure 5 when just dependency, safety point of
view, IV partitioning, and IV & CV partitioning are
considered, respectively.

For the case which just considers dependency

between variables, the previous pressure (RCV) was
changed with 0.1 psi interval (resolution) from 2940.0
psi to 300 psi, and all possible states of other dependent
variables to each value of previous pressure are
investigated. In this case, total number of test sets is
2.59E13. This number is too large to test all. Main
contributors of this large number are 4000 states of trip
setpoint for each previous pressure (1780.0~700.0 psi)
and 200 states of rest delay time for all previous
pressure. Here the variable for reset delay time is only
for three kinds of trip logics: pressurizer low pressure
trip, steam generator low water level trip, and steam
generator low coolant flow trip. Among them,
pressurizer low pressure trip has the longest delay time.

In the safety point of view, the number of sets which
requires trip signal generation is extracted. There are
three kinds of cases requiring trip signal. Two are
module error and channel error. They are just boolean
type. The other case is crossing trip setpoint of current
pressure. The all sets that when the current pressure
drops 3.3 psi from the previous pressure, it cross the trip
setpoint are counted. The total number of test sets for
this case is 1.13E11. Practically, this number is still
large to test all.

Equivalence partitioning for IV domain was
considered to reduce the number of test sets. 33 or less
than 33 states for current pressure for each current
pressure are reduced to 2. Actually, except the variable
for current pressure, all other variables are boolean type.
So, partitioning of IV domain is not very effective for
this example logic. In this case, total number of test sets
is 1.26E10.

If CV domain is partitioned additionally, the total
number of test sets decreases drastically up to 3.80E6.
The resolution for previous pressure (RCV) was

maintained, but all possible states for trip setpoint and
reset delay time do not need to be applied. When a trip
signal is generated well for one set which is consisted of
representative value of trip setpoint and reset delay time
from each partition, this result is considered as the
result covering the all values in each chosen partition.
Therefore, 4000 or less than 4000 states for trip setpoint
and 200 states for reset delay time are reduced to 2,
respectively. When we assume that the computing time
for one test set is few millisecond, it will take just few
hours to calculate all number of test sets for this logic.
Especially, in RPS, the fact that this trip logic is the
most complicated one should be considered with the
result

4. Conclusions

Trajectory form of input based approach for a safety

critical software reliability quantification has limitations
caused by unclear length and the numerous number of
input sets required.

To address these limitations, another method to
generate test sets which is consist of CoSs and input
sets was proposed. If the possible ranges of each
variable might be identified, each of CoS and input set
could be expressed as combination form of single
values of each variable not trajectory form. The possible
range of each variable can be identified through logical
relations between variables, plant dynamics, and
characteristics of ADC. When the proposed method is
applied, the test process might be simplified and shorten
compare to the case of trajectory form of input.

The feasibility of this method was shown through an
example trip logic in RPS. In this example, when just
dependency between variables were considered, the
total number of test sets was impracticable. However,
by utilizing the means described here to reduce the
number of test sets the reasonable number of test set
could be obtained. To get the proper number of test sets,
different control per variable also possible because this
method considers logical relations between variables
and possible resolution & ranges of them.

In case of software for straightforward and simple
PLD based system, such as RPS, the proposed method
expected to work properly to generate finite tests
without trajectory form of input.

Nomenclature
I&C (Instrumentation and Control)
NPP (Nuclear Power Plant)
KNICS (Korea Nuclear Instrumentation and Control
System)
RPS (Reactor Protection System)
CCF (Common Cause Failure)
V&V (Verification and Validation)
SRGM (Software Reliability Growth Model)
CoS (Context of Software)
CV (Context Variable)
IV (Input Variable)
ADC (Analog to Digital Converter)

Figure 5 Total number of test sets according to different approach

Transactions of the Korean Nuclear Society Autumn Meeting
Pyeongchang, Korea, October 30-31, 2014

RCV (Reference Context Variable)
LOCA (Loss of Coolant Accident)

REFERENCES

[1] G.Y. Park, K.Y Koh, E.Y. Jee, P.H. Seong, K.C. Kwon,
D.H. Lee “Fault Tree Analysis of KNICS RPS Software”
Nuclear Engineering and Technology, Vol. 40 No.5, pp. 397-
408, 2008.
[2] T.L. Chu, M. Yue, G. Martinez-Guridi, J. Lehner
“REVIEW OF QUANTITATIVE SOFTWARE
RELIABILITY METHODS” Brookhaven national Lab, 2010.
[3] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P.
Krause, M. Rajat “Predicting software defects in varying
development lifecycles using Bayesian nets” Information and
Software Technology, Vol. 49, No.1, pp. 32-43, 2007
[4] N. Fenton, M. Neil, D. Marquez “Using Bayesian
networks to predict software defects and reliability” Journal of
Risk and Reliability, Vol. 222, No. 4. pp. 701-712, 2008.
[5] H. Eom, G. Park, S. Jang, H. S. Son, H. G. Kang “V&V-
based remaining fault estimation model for safety–critical
software of a nuclear power plant” Annals of Nuclear Energy,
Vol. 51, pp. 38–49, 2013.
[6] J. May, G. Hughes, A. Lunn. “Reliability estimation from
appropriate testing of plant protection software” Software
Engineering Journal, Vol.10, No. 6, pp. 206-218, 1995.
[7] T.L. Chu, M. Yue, G. Martinez-Guridi, J. Lehner
“Development of quantitative Software Reliability Models for
Digital Protection Systems of Nuclear Power Plants. U.S.
NRC, 2011.
[8] S. Kuball, JHR. May, “A discussion of statistical testing
on a safety-related application”. Journal of Risk and
Reliability, Vol. 221, No. 2, pp. 121-132, 2007.
[9] B. Littlewood, L. Strigini, “Guidelines for Statistical
Testing” Centre for Software Reliability at City University,
1997.
[10] H.G. Kang, H.G. Lim, H.J. Lee, M.C. Kim, S.C. Jang
“Input-profile-based software failure probability
quantification for safety signal generation systems” Reliability
Engineering & System Safety, Vol. 94, No. 10, pp. 1542-1546.
2009.
[11] J.G. Choi, D.Y. Lee “Development of RPS Trip Logic
Based on PLD Technology. Nuclear Engineering and
Technology, Vol. 44, No. 6, pp. 679-708, 2012.
[12] I. Burnstein “Practical Software Tesing” Springer, 2002.

