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1. Introduction

The KAERI (Korea Atomic Energy Research
Institute) analyzed a thermal hydraulics in an upper
plenum of the MONJU using MARS-LMR code. The
MONJU is a Japanese sodium cooled fast reactor,
which is a MOX-fueled, loop-type reactor producing
714 MWth. The MARS-LMR code is based on the
MARS code for a safety analysis of a liquid metal
reactor, and the MARS code has been developed by
coupling RELAP and COBRA-TF in the KAERI. A
geometrical data and time-dependent inlet conditions
were used, which is provided to participants of IAEA
(International ~ Atomic  Energy  Agency) CRP
(Coordinating a Research Project) named “Benchmark
Analysis of Sodium Natural Convection in the Upper
Plenum of the MONJU Reactor Vessel” by the JAEA.
One-dimensional thermal hydraulic analysis was
implemented using MARS-LMR code to validate the
thermal-hydraulic models of the MARS-LMR code and
identify important phenomena such as the buoyancy
effect and thermal stratification.

2. Methods and Results

The reactor vessel of the MONJU is a cylindrical
type with three outlet nozzles. Figure 1 shows the
geometry of the MONJU RV upper plenum. A
cylindrical inner barrel is located at radially more inner
region of 50 cm from the inside wall of the reactor
vessel. There are 48 LFHs (Lower Flow Holes) at 1.63
m height and 24 UFHs (Upper Flow Holes) at 2.55 m
height from the top of a support plate.

Fig. 1 Geometry of the MONJU RV upper plenum

The MONJU has a complex UCS (Upper Core
Structure) and other structures such as fuel handling
systems in the upper plenum. The UCS consists of a
honeycomb structure, flow-guide tubes, and fingers. A
thermocouple inside the finger measures a fuel
assembly outlet temperature. There are 19 control rod
guide tubes inside the UCS. A TC-plug is located at
about 3 m height from the vessel center. The TC-plug
has 36 thermacouples, which measure a vertical
temperature during a turbine trip test.

Figure 2 shows a top view of the MONJU core
subassemblies (S/As). The core subassemblies consist
of inner divers, outer divers, neutron sources, blankets,
neutron shielding, and control rods. A heat generated in
the core is cooled by the sodium which flows into the
reactor vessel through three inlet nozzles, and flows out
the loop through three outlet nozzles. There are three
flow paths of the sodium from the core to the reactor
vessel outlet nozzles: through the LFHs and UFHSs, and
beyond an inner barrel. Table 1 describes major design
parameters of the MONJU.

This study simulated the flow behavior of the
primary sodium in the MONJU reactor vessel. The core
regions are divided into six regions in the MARS-LMR
calculation. The boundary condition of the inlet is
defined with the condition of the core outlet.

Fig. 2 Configuration of the reactor core

An input deck for a steady state is generated for the
MARS-LMR calculation, and the steady-state
calculation is performed at 40 % power condition.
Figure 3 shows a nodalization for the one-dimensional
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analysis with the MARS-LMR. The core region is
divided into 6 channels, and the hot pool region is
divided into 3 regions: a radially inside region of an
inner barrel (volume number: 230), a radially outside
region of an inner barrel (volume number: 100), and an
overflow region (volume number: 240). 48 LFHs and
24 UFHs are modeled as pipes (volume number: 801
and 901, respectively) to consider an abrupt area change
due to a flow hole. Sodium in a lower position than a
core barrel (volume number: the 1st node of 230)
assumed to remain in a low temperature.
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Fig. 3 Nodalization for the 1-D analysis with MARS-LMR

Figure 4 and figure 5 show flow rates of the RV
upper plenum, flow holes, and overflow region in
steady-state calculations of a 1-D analysis. In this
calculation, the flow rate of a LFH is 2.32 kg/s, while
the flow rate of an UFH is 1.55 kg/s. The over-flow rate
over the inner barrel is calculated as 1878.8 kg/s.

Figure 6 to 15 show a transient result calculated in
the MONJU RV upper plenum until 3600 sec after a
turbine trip. A thermal stratification phenomenon is
observed as shown in Figure 6. Coolant temperature
remarkably decreases until about 600 sec after the
turbine trip, and then the coolant is cooled slowly after
600 sec. Sodium under the 5th node with UFHSs are well
mixed by natural convection flow, so their temperatures
become to be almost same. On the other hands, sodium

over the 5th node shows a thermally stratified condition.

Figure 7 to 8 show sodium flow rates in the RV
upper plenum, flow holes, and overflow region in
transient calculations. In this calculation, the maximum
flow rate of a LFH is estimated as 6.4 kg/s at 1498 sec,
while the maximum flow rate of an UFH is 5.3 kg/s at
1922 sec after a reactor trip. The over-flow rate over an
inner barrel decreased into zero after 2882 sec, which
results in stagnations of sodium temperatures in the
region from the 6th node to the 9th node of 230.

Figure 9 to 16 show comparisons of the calculated
temperatures in the 1-D analysis with the MONJU
System Start-up Tests(SSTs) data. The calculated
results show a good agreement with the MONJU
experimental data until 2500 sec after the turbine trip.
However, the calculated temperature at the 9th node

near the top of an inner barrel is lower than the
experimental data. It is considered as limitation of the
one-dimensional analysis, because the over-flow region
has multi-dimensional flow phenomenon.
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Fig. 4 Flow rates along the RV upper plenum in the steady-
state analysis
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Fig. 5 Flow rates of flow holes and overflow in the steady-
state analysis
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Fig. 6 Temperature stratification under the transient condition
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Fig. 13 Temperatures at the 7th node of 230 during the
transient calculation

460

4404

420 +

400

380 T

Temperature, °C
[}

360 1-D calculation
—— Calculated data at node 8

340 -
—e— Measured data at node 8

320

300

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
time (0)

Fig. 14 Temperatures at the 8th node of 230 during the
transient calculation
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Fig. 15 Temperatures at the 9th node of 230 during the
transient calculation
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Fig. 16 RV outlet temperature during the transient calculation
3. Conclusions

One-dimensional thermal hydraulic analysis was
implemented in MARS-LMR code to validate the
thermal-hydraulic models of the MARS-LMR code and
identify important phenomena such as buoyancy effect
and thermal stratification. The calculated result shows a
good agreement with the MONJU experimental data.
However, a calculated temperature at the 9th node near
the top of an inner barrel is lower than an experimental
data. It is considered to be caused by modeling of an
over-flow region as one dimensional volume, because
the over-flow region has multi-dimensional flow
phenomenon. Therefore, the multi-dimensional flow in
the over-flow region is a point to be considered for
further studies.
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