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1. Introduction 

 

When we perform a Monte Carlo estimation, we 

could get a sample variance as the statistical uncertainty 

of it. However, this value is smaller than the real 

variance of it because a sample variance is biased. To 

reduce this bias, Gelbard devised the method which is 

called the Gelbard's batch method. It has been 

certificated that a sample variance get closer to the real 

variance when the batch method is applied. In other 

words, the bias get reduced. This fact is well known to 

everyone in the MC field. However, so far, no one has 

given the analytical interpretation on it. In this paper, 

variances and the bias will be derived analytically when 

the Gelbard's batch method is applied. And then, the 

real variance estimated from this bias will be compared 

with the real variance calculated from replicas.  

 

2. Analytical derivations of variances and the bias 

 

In this section the analytical derivations of variances 

and the bias are described.   

 

2.1. Definition of the batch 

 

The conceptual drawing of batches are described in 

the Fig. 1. N is the number of cycles. Each cycle is 

represented as yellow boxes in the Fig. 1. NB is the 

number of batches. Each batch is represented as green 

boxes in the Fig. 1. MB is the batch size which means 

how many cycles are included in a batch. The j-th batch 

is defined as follows.  
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A batch is identical to the average value of MB cycles. 

The average value of the tally in the conventional MC 

method is given as follows. 

1 1

1

1
(2)

N
i

i

Q Q
N 

 
 

By the same token, the average value of the tally in the 

batch method is given as follows. 
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2.2. Real Variance 

 

The real variance of the tally in the conventional MC 

method can be shown as follows. 
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In the same way, the real variance of the tally in the 

batch method can be shown as follows. 

2 2 (5)
B B B BR M M M MQ E Q E Q E Q                

 

These two real variances are identical. It can be shown 

easily.  
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According to eq. (6), we can derive eq. (7). 
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The real variance of the tally in the conventional MC 

method can be represented with covariance terms of 

tallies as follows. 
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By the same token, The real variance of the tally in the 

batch method can be also represented with covariance 

terms of tallies as follows. 
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From the relation in eq. (7), we can conclude as follows. 
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2.3. Sample Variance 

 

The sample variance of the tally in the conventional MC 

method is given as follows.  
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Along the same lines, the sample variance of the tally in 

the in the batch method can be shown as follow.  
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The j-th batch from eq. (2) and the average value of the 

tally in the batch method from eq. (6) are substituted 

into eq. (12). And then each term is reorganized to 

obtain eq. (13).  
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2.4. Apparent Variance 

 

The apparent variance is defined as a expected value 

of a sample variance. According to the definition, we 

can derive the apparent variance of the tally in the 

conventional MC method given in eq. (14) and the 



 

apparent variance of the tally in the batch method given 

in eq. (15). 
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In the right side of eq. (14) and (15), we can see that 

first terms are identical and second terms are similar, a 

little bit different. The remarkable difference is the third 

term in eq. (15). It comes from covariance terms 

between tallies in a batch. It makes a notable difference 

between the apparent variance in the batch method and 

the apparent variance in the conventional MC Method. 

 

2.5. Bias 

 

The bias is defined as the difference between the real 

variance and the apparent variance. According to the 

definition, we can derive the bias. The bias in the 

conventional MC method is given as follows.  
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The bias in the conventional MC method is given as 

follows.  
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In the right side of eq. (16) and (17), we can see that 

first terms are a little bit different. The remarkable 

difference is the second term in eq. (17). Covariance 

terms between tallies in a batch are fallen apart from the 

bias. For this reason, the bias in the batch method is less 

than the bias in the conventional MC method.  

 

3. Real variance estimation in the batch method 

 

It is necessary to examine the validation of the 

apparent variance and the bias which were derived in 

the previous section. In this paper, it is performed with 

the 2 by 2 fission matrix problem[3]. In this problem, 

the fission matrix is defined as follows.  
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We can calculate 1 1cov ,i i lQ Q    terms in eq.(14) ~ eq.(17) 

directly from tallies. However, This approach could 

cause a problem as shown in Fig. 1. We can expect that 

the covariance of tallies decreases in proportion to the 

dominance ratio of the fission matrix as the cycle length 

increases. It can be shown analytically. However, its 

behavior gets out from this tendency. For this reason, 

the error propagation model[2] was adopted to calculate 

1 1cov ,i i lQ Q    terms. 

   
Fig. 1. Covariance behavior vs. Cycle length 

 

 
Fig. 2. Apparent and sample variance comparison 

 

     
Fig. 3. Real variance estimation 

 
4. Conclusions 

 

Variance and the bias were derived analytically when 

the batch method was applied. If the batch method was 

applied to calculate the sample variance, covariance 

terms between tallies which exist in the batch were 

eliminated from the bias. 

 With the 2 by 2 fission matrix problem, we could 

calculate real variance regardless of whether or not the 

batch method was applied. However as batch size got 

larger, standard deviation of real variance was increased. 
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