Stabilization and Solidification of Boric Acid Waste using Phosphate Cement

한전 원자력환경기술원
대전광역시 유성구 덕진동 150

요 약

인산 또는 인산염은 방사성폐기물 구성분과 상온에서 화학적으로 반응하여 물에 불용성인 인산염시멘트로 화학적 또는 물리적으로 포화하여 고화체가 장기적인 건전성을 갖게 한다. 본 연구에서는 인산염시멘트를 이용하여 원전에서 발생하는 봉산폐기물을 대상으로 고화특성 실험을 수행하였다. 모의폐기물은 원전의 봉산폐기물을 참고하여 우선 수용에 상태로 제조하고 Ca(OH)2를 투입하여 모의폐액을 전처리 한 다음 이들을 다시 건조하여 분말 상태로 제조하였다. 실험결과 KH2PO4와 MgO가 1:1.5이 고 봉산폐기물이 25wt% 인산염화합체의 압축강도는 24 Mpa로 나타났다. 또 5일 동안 수행한 단축시험 결과 Co 및 Cs의 첨가분는 각각 11, 10으로 나타나서 미국 연방법 10CFR61에 따른 처분장 수용기준을 만족하였다. 또, 25wt%를 함유할 경우 VRF값은 12로써 일반 포름랜드 시멘트에 비해 매우 우수한 특성을 나타내었다.

Abstract

It is known that the phosphoric acid and phosphate salts react with some of radioactive materials to produce an insoluble phosphate ceramics, which chemically binds radioisotopes in the wastes on the phosphate and physically encapsulated in ceramic matrix at room temperature. In this study the stabilization and solidification of the simulated concentrated boric acid wastes produced at Nuclear Power Plant using phosphate binder of mixed MgO and KH2PO4 were tested. Referring to the reported characteristics of the concentrated boric acid wastes, the boric acid wastes for test were simulated spiked with Cs and Co nitrate salts for Cs-137 and Co-60. As results of experiments, the compression pressure of the molded wastes of the simulated boric acid wastes containing the phosphate binder of mixed MgO and KH2PO4 in the ratio of 1.5 to 1.0 in mole basis was 24 Mpa, and the leachabilities of Cs and Co were 10 and 11, respectively, after 5 days curing of the molded wastes. The compression pressure of the molded wastes and leachabilities of the Cs and Co ions from the waste matrix satisfied the requirements of disposal wastes given in 10CFR61. And also it was found that 25wt.% of the boric acid wastes could be loaded in the molded wastes with comparable characteristics of the portland cement and that VRF of the wastes was 12.

* 상온고화기술 및 고화재질개발책임자
1. 서 론

최근 국내의 연구소에서는 방사성폐기물 및 유해폐기물의 안정화/고화를 위해 주로 온 또는 고온플라즈마를 이용하는 고온 안정화/고화 기술의 연구개발이 진행되고 있다. 한편 원자력산업 현장에서는 기존의 시멘트를 기본으로 하여 폐기물의 특성에 따라 무기재료를 선택적으로 이용하는 공정개발 연구도 활발히 진행되고 있다 2). 특히 산업부산물이나 광물 등 무기재료를 방사성폐기물의 안정화 재료로 재활용 하는 연구가 많이 수행되었다. 예를 들면 화력발전의 부산물인 석탄산(coal ash)과 탄화석고(gypsum)를 비롯하여 비철금속 철강공장의 분진(blast furnace slag) 및 silica fume, 원유의 탈황 과정에서 발생되는 황(sulfur), 그리고 우라늄 및 희토류 원소 추출 시에 부산물로 발생하는 인산염(phosphate) 등을 방사성폐기물의 안정화/고화에 활용하는 연구가 수행되었다 3) 4) 5).

이처럼 지역적으로 손쉽게 구할 수 있는 광물이나 무기재료 계통의 산업부산물은 방사성 폐기물의 안정화/고화에 활용할 경우 폐기물의 특성에 따라 안정화 재료의 조성을 조절할 수 있어서 물리/화학적 안정성 뿐이난 고화재를 만들 수 있다. 이와 관련하여 최근 ANL에서 인산염 안정화재기를 이용하여 혼성유기폐기물(mixed waste) 및 방사성소각계를 대상으로 고화실험을 수행한 바 있다 6) 7).

본 연구에서는 폐기물 중의 무기산화물이 인산 또는 인산염과 화학적으로 반응하여 물에 불용성염인 인산염시멘트를 형성하고 핵종 및 수산화물 첨전들은 인산염 안정화재에 의해 물리적으로 포화(encapsulation)되어 전교한 세라믹 형태의 인산염시멘트를 형성하기 때문에 일반 포틀랜드시멘트 메질과 그 특성이 다를 것으로 생각하였다. 따라서 인산염 안정화/매질 및 인산염고화재의 특성을 평가하기 위해 모의봉산폐기물에 대상으로 선정하고 관련 실험 및 시험을 수행하였다. 우선 지금까지 진행된 시험내용은 단 시간에 평가가 가능한 작업도(workability), 압축강도(compression strength), 단축시험(abbreviate leach) 시험 등이다.

2. 실험재료 및 방법

2.1 제료

가. 안정화재료(binder)

KH_2PO_4(potassium dihydrogen phosphate)와 MgO의 혼합물을 안정화재료로 사용하였다. KH_2PO_4는 Canto社 제품(순도99%, 임상)을 Ball Mill로 16시간 분쇄하여 분말화(입도 50 μm이하)하여 사용하였다. MgO(magnesia)는 Shinyo社 제품(순도98%, 입도 50 μm이하)을 사용하였다. 모의 봉산폐액 증 봉산을 전처리(pretreatment)를 위해 Ca(OH)$_2$를 사용하였다.

나. 모의 봉산폐기물

봉산층계폐액은 PWRs에서 발생하는 주요 폐기물의 하나이며 봉산이 주된 연으로 포함되어 있다. 실험을 위해 제조한 모의봉산폐기물은 고리원자력 3,4호기의 폐액조성(Table 1)의 범위를 참조하여 평균값으로 제조하였다. 폐액 구성물 중 봉산은 HBO_3로, 총염(SS, Na+, Ca2+, Mg2+, Cl-를 포함)은 NaNO$_3$로 모사하였고, 핵종인 Co와 Cs는 비
클로라이드 형태의 화합물인 CoCl₂, CsCl를 사용하였다. 이때 Co와 Cs의 농도는 고화체
침출시험시 출몰 농도를 고려하여 실제보다 농은 임의농도(각각 100ppm)로 하였다. 이
렇게 제조된 분산폐액은 함유된 분산 2품에 대해 1품의 비율로 Ca(OH)₂를 투입하여 분
산을 원천 처리하였으며 NaOH로 pH를 7~9 사이로 조절한 뒤 농축하여 분말로 건조하
였다. 최종적으로 제조된 폐액1ℓ 당 모의분산폐액을 21g를 얻을 수 있었다.

다. 몰더(molder)

건이/정경의 비가 1.8이 되도록 하고 고화체의 탈형을 고려하여 상하부가 개방된 원주
형 PVC몰더(H45mm × φ 25mm)를 제작하였다.

2.2 시험시편의 제작

가. 고화체의 혼합/성형(Mixing and Molding)

 먼저 KH₂PO₄, MgO 및 모의분산기를 정량하여 V-형 분말혼합기(용량:1ℓ)를 이용
하여 30분 이상 혼합한 다음 혼합 분말을 300㎖ PE용기에서 물과 함께 혼합하여 반응하
였다. 혼합물의 온도 및 점도가 적절한 정도에 이르면 혼합물을 몰더에 부여 넣었다.
이때 혼합물은 너무 빡쳐 몰더에 혼합물을 부을 경우 혼합이 부족하거나 민도차에 의한
제료의 분리가 일어나서 결과적으로 균일한 고화체를 얻을 수 없으므로 주의하였다. 시
험시편은 각 조건에서 최소 3개를 제작하였다.

나. 고화체의 경화/양생(Setting and Curing)

인산염과 무기산화물의 반응식은 여러 가지로 제시되고 있으나 일반적으로는 식(1)과
같이 상온에서 산-알칼리 반응하여 불용성 제3인산염을 생성한다 8). 또 이 반응은 산-
알칼리 반응으로 급격한 반응열에 의해 혼합시작 후 반응혼합물의 온도가 최고 70℃까지
상승하면서 수분 이내에 1차 경화가 종료되기 때문에 반응지연제를 사용하지 않고는 작
업시간의 여유를 얻을 수 없다. 그러나, 분산폐액은 포틀랜드 시멘트의 경화반응에서
와 마찬가지로 혼합물의 산성도 및 borate 이온의 영향으로 인해 인산염시멘트의 경화반
응에서도 지연효과가 있다. 때문에 분산폐액을 소식회(slaked lime)로 전처리 하여 인산

<table>
<thead>
<tr>
<th>Properties</th>
<th>Value</th>
<th>Properties</th>
<th>Value</th>
<th>Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.1~7.3</td>
<td>Mg²⁺</td>
<td>80~160 ppm</td>
<td>Cs-134</td>
<td>1.01E-4~6.75E-4 μCi/㎖</td>
</tr>
<tr>
<td>Conductivity</td>
<td>851~1347 μmho/cm</td>
<td>Cl⁻</td>
<td>48~101 ppm</td>
<td>Cs-137</td>
<td>2.06E-4~1.52E-3 μCi/㎖</td>
</tr>
<tr>
<td>SS</td>
<td>11~26 ppm</td>
<td>Boron (H₂BO₃)</td>
<td>1069~2467 ppm (≒11444ppm)</td>
<td>Fe-59</td>
<td>N.D. ~ 4.96E-5 μCi/㎖</td>
</tr>
<tr>
<td>Na⁺</td>
<td>141~233 ppm</td>
<td>Co-58</td>
<td>1.67E-4~9.10E-3 μCi/㎖</td>
<td>Mn-54</td>
<td>8.96E-4~9.83E-4 μCi/㎖</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>38~64 ppm</td>
<td>Co-60</td>
<td>1.03E-3~3.97E-3 μCi/㎖</td>
<td>Nb-95</td>
<td>1.90E-4~3.71E-4 μCi/㎖</td>
</tr>
</tbody>
</table>

주) 고려 3, 4호기 중발능축 전의 폐액저차탕크내의 폐액, 1995. 6월 ~ 8월
염과 반응하면 식(2)에서와 같이 물에 불용성인 calcium borate을 얻을 수 있었고 9) 반응 시간을 20～30분 사이로 조절할 수 있었다.

\[
\begin{align*}
\text{KH}_2\text{PO}_4 + \text{MgO} + 5\text{H}_2\text{O} & \rightarrow \text{MgKPO}_4 \cdot 6\text{H}_2\text{O} \\
2\text{H}_2\text{BO}_3 + \text{Ca(OH)}_2 & \rightarrow \text{CaO} \cdot \text{B}_2\text{O}_3 \cdot 4\text{H}_2\text{O}
\end{align*}
\]

(1) (2)

성형된 시험수면은 약 30분이 경과하면 물더를 제거하여 양성실에서 습온상태(40±3℃, RH 95%이상)에 두어 미반응 용의 반응이 종결되도록 하였다.

다. 고화시험의 가공

고화시험은 시험 전에 양성실에서 캐내어 하루 동안 태기 중에서 건조한 다음 다이아몬드 절단기(Controls社 제품)를 사용하여 양단면을 축방향에 직각으로 절단하고, 사포 (#150〜#1,200)를 사용하여 마무리 가공을 하였다. 가공된 시험시면은 무선 필도를 측정한 다음 관련시험을 수행하였다. Fig. 1은 물더를 제거한 인산염고화체로 단면을 가공하기 전의 모습이다.

2.3 시험방법

가. 압축강도(compressive strength)

종축방향의 일측압축강도 시험은 고화체의 구조적 안정성을 평가하는 데 가장 중요한 방법이다. 압축강도는 ASTM C39 방법[10]에 따라 point load tester(Controls社의 D550)를 사용하여 하중에 의해 고화체가 받는 최대의 응력을 단면적으로 나눈 값으로서 구하였다. 압축강도 측정시 하중 무과측도, 시편의 길이/직경의 비 그리고 양단면의 가공상태 등이 시험결과에 영향을 줄 수 있으므로 주의하였다. 압축강도를 위한 시험시면은 길이/직경의 비가 1.8로 일정하도록 제작하였으나 단면 가공중 시편의 길이가 줄어들면 L/D 보정계수로 보정하였다.

나. 첨출(Leaching) 시험

첨출시험은 고화체의 내수성의 지표라고 할 수 있는 중요한 시험으로 원자력 분야에서 가장 보편적으로 사용하는 ANSI/ANSI 16.1[11]에 따라 수행하였다. 첨출액(leachant)로는 전기정도 5μmho/cm 이하이고 TOC가 3ppm 이하인 탈영수를 사용하였다. 첨출액의 부피는 시편 표면적의 10배가 되도록 하였다. 고화시험은 두경이 있는 500㎥ PE 용기내에 나이론 즙으로 매달아 약 10회에 걸쳐 주기적(2h, 7h, 24h, 2일, 3일, 4일, 5일, 19일, 47일, 90일)으로 첨출수를 교환하여 AA(Aurora Instrument社, AI-1100GF)로 분석하였다. 첨출수에 용해된 Co, Cs 및 Na 이온의 농도로부터 계산된 누적첨출량과 식(3)〜(5)를 이용하여 각 핵종에 대한 첨출저수(L)를 구하였다.

\[
D = \pi \left(\frac{\alpha n}{\Delta t_n} \right)^2 \left(\frac{V}{S} \right)^2 T
\]

(3)
\[T = \left(\frac{1}{2} \left((t_0)_{1/2} + (t_{n-1})_{1/2} \right) \right)^2 \]

(4)

\[L = \frac{1}{n} \sum_{i=1}^{n} \left[\log(1/D) \right]_i \]

(5)

3. 실험결과 및 고찰

3.1 양성시간에 따른 압축강도

Fig. 2는 K\textsubscript{2}HPO\textsubscript{4} : MgO : H\textsubscript{2}O를 mole\textsubscript{농도} 기준으로 100% : 100% : 150% 및 100% : 150% : 150%비율 일 때 양성시간에 따른 압축강도를 시험한 결과이다. 시험결과 35일 양성한 고체제의 최종압축강도는 25Mpa이었다. 양성 2~3일이면 최종 압축강도의 90%에 도달하였고 양성10일째인 고체제의 압축강도는 24Mpa로서 최종 압축강도의 96% 이상의 압축강도가 발현되었다. 이 시험결과에 따라 이후의 압축강도시험 및 채출실험은 10일간 양성한 시험을 기준으로 하였다.

3.2 분산체물 함량(Waste Loading)에 따른 압축강도

Fig. 3은 분산체물 함량물 건조물의 함량에 따른 압축강도를 시험한 결과이다. K\textsubscript{2}HPO\textsubscript{4} : MgO이 100% : 150%인 안정화 배경에 대해 분산체물 5~40wt%범위에서 단계적으로 증여하였다. 3일간 트라이밍한 고체제를 함유하였을 때 압축강도가 24Mpa로서 최대 강도를 나타내었다. 실험 범위 내에서 모든 고체제의 압축강도는 미국 연방 10CFR60의 LDRs(Land Disposal Restrictions)의 최소값인 500psi(3.4Mpa)를 원한다. 그러나 25wt% 이상의 분산체물물 함유할 경우 제대로 경화가 일어나지 않았고 따라서 압축강도도 현저히 떨어졌다. 실험결과 적절한 분산체물 함유량은 25wt%정도 이며 이때 VRF값은 12로 일반 포틀랜드 시멘트에 비해 매우 우수한 특성을 나타내었다. 압축강도와 관련하여 고체제의 성형조건(압축, 진공) 및 양생조건(습응, 가열/가압)에 따른 시험은 진행 중에 있다.

3.3 물/안정체료 비(w/b ratio)에 따른 압축강도

Fig. 4는 분산체물물 함량을 25wt%로 고정하였을 때 물/(K\textsubscript{2}HPO\textsubscript{4}+ MgO)의 비에 따른 압축강도를 시험한 결과이다. K\textsubscript{2}HPO\textsubscript{4}:MgO의 물비를 100%:150%로 하고 물의 함량을 안정화배경(K\textsubscript{2}HPO\textsubscript{4} + MgO) 50~350%까지 50%간격으로 변환하고 이것을 물/안정화 재료의 비로 계산하였다. 시험결과 w/b비가 작을 수록 고체제 강도는 큰 것으로 나타났다. w/b비가 0.9 이내, 즉 K\textsubscript{2}HPO\textsubscript{4}를 기준으로 물의 양이 200%이내이면 LDRs를 만족하였다. 이 w/b비가 0.9 이상의 범위에서는 양의 물이 혼합물의 유동성을 좋게 하였지만 경화 후에도 결합이 참여되지 않은 물이 대부분 증발하지 못하고 고체제 주변에 유리수로 남아있거나 고체제 내부에 남아서히 증발하면서 물이 있던 부분들이 공극화 되면서 조직이 지활하지 못하게 되기 때문에 생각된다. 본 실험에서는 분산능축재료를 완전히 건조하여 분말화하였으나 실제 공정에서는 w/b비 0.9이내로 건조하면 페액내 물만으로 경화반응이 수행될 수 있을 것으로 사료된다.
3.4 침출(Leeaching) 시험.

KH₂PO₄ 및 MgO의 볼비가 100%:150%이고 25wt%의 붉산페기물의 함입량 고화체에 대해 5일 동안 단축침출시험(abbreviate leach test)을 수행하였다. 총 7회 까지 침출수를 교환하고 침출수에 녹아 나온 혁증농도를 분석한 결과 Co, Cs의 침출량이 가 11, 10으로 계산되었다. 이 값은 LDRs의 기준치인 침출량이 6을 충분히 만족하는 값이었으며 침출시험을 수행하는 동안 침출수의 pH 및 전기전도도에 두드러진 변화는 없었다.

3.5 기타시험

인산염고화체의 침수시험(immersion test)이 침출시험과 연계하여 수행 중에 있다. 인산염고화체에 대한 90일간 침수 시험이 종료되면 시험 오류의 변형상태, 압축강도변화, 수밀특성 시험 그리고 여러 오상환경 하에서 침수 시에 구성 시험이 수행될 예정이다. 또, 경화반응율을 인한 반응성생물 및 미반응 물질의 확인을 위해서 XRD, SEM 등의 분석을 수행 중에 있다.

4. 결 론
1. 인산염시멘트의 KH₂PO₄:MgO의 볼비가 1:1.5 일 때 최적 붉산페기물의 함입량(waste loading)은 25wt%였다.
2. 붉산페기물-인산염시멘트고화체의 압축강도는 KH₂PO₄:MgO의 볼비가 1:1.5 이고 폐기물 함입량이 25wt% 일 때 24Mpa이었고 이때의 VRF는 12였다.
3. 고화체 압축강도 측면에서 물/안정화제의 비는 0.9이하가 적절한 것으로 나타났다.
4. 붉산페기물-인산염시멘트고화체의 단축침출시험결과 Co, Cs에 대한 침출량은 각각 11과 10 이었다.

5. 참고문헌
9) 한국전력공사, 방사성폐기물환경보호정부프로그램개발, KRC-87N-J05, 1989.
Fig. 1 Phosphate–boric acid waste form.

Fig. 2 Curing time vs. compressive strength of the phosphate–boric acid waste form.

Fig. 3 Waste content vs. compressive strength of the phosphate–boric acid waste form.

Fig. 4 Water/Binder ratio vs. compressive strength of the phosphate–boric acid waste form.