'98 추계 학술발표회 논문집 한국원자력학회

불량 소결체를 재활용하기 위한 새로운 UO2 소결기술

A New UO₂ Sintering Technology for the Recycling of Defective Fuel Pellets

송근우, 김건식, 정연호

한국원자력연구소 대전광역시 유성구 덕진동 150

요 약

UQ₂ 소결체 생산공정에서 발생하는 불량 소결체를 다량으로 재활용할 수 있는 소결기술을 개발하였다. UQ₂ 소결체를 공기중에서 산화시켜 U₃Q₈ 분말을 준비하고 AUC-UQ₂ 분말과 10~100 wt% 범위에서 서로 배합하고 추가로 Nb₂Q₅ 및 TiQ₂를 첨가하여 혼합하고 성형한 후, 수소분위기에서 1680℃로 4시간 소결하였다. 소결촉진제가 없으면, UQ₂ 소결체의 밀도는 U₃Q₈ 양에 따라서 감소하여 (감소율: 1 wt% U₃Q₈ 당 0.2 %TD), U₃Q₈ 배합비율이 10 wt%를 넘어서면 소결밀도가 93.5 %TD 이하가 된다. Nb₂Q₅가 0.3 wt% 이상 또는 TiQ₂가 0.1 wt% 이상 첨가되면, UQ₂ 소결체는 모든 U₃Q₈ 배합비율에서 94 %TD 이상의 밀도를 갖는다. Nb₂Q₅ 첨가된 경우에는 소결체의 결정립 크기가 U₃Q₈ 배합비율에 무 관하고, TiQ₂ 첨가된 경우에는 U₃Q₈ 비율에 따라서 감소하는 경향이 있다. 소결촉진제를 첨가한 소결 체의 결정립 크기는 항상 약 20µm 이상이고, 기공이 크기 때문에 재소결시험 후 밀도증가가 작다. 따라서 Nb₂Q₅ 및 TiQ₂ 같은 소결촉진제를 사용하면 U₃Q₈을 다량으로 UQ₂ 분말과 혼합하여 고밀도 UQ₂ 소결체를 제조할 수 있다.

Abstract

A new UO₂ sintering technology to recycle defective UO₂ pellets has been developed. The defective UO₂ pellets were oxidized in an air to produce U₃O₈ powder, and the U₃O₈ powder was mixed with fresh AUC-UO₂ powder in the range of 10 to 100 wt%. Nb₂O₅ and TiO₂ are added to the mixed powder. The mixed powder was pressed and sintered at 1680°C for 4 hours in hydrogen. The density of UO₂ pellets without sintering agents decreased linearly with the U₃O₈ content at the rate of 0.2 %TD per 1 wt% U₃O₈, and the density was below 93.5 %TD at the U₃O₈ contents above 10 wt%. However, the mixed UO₂ and U₃O₈ powder containing Nb₂O₅ (\geq 0.3 wt%) and TiO₂ (\geq 0.1 wt%) yielded a sintered density above 94 %TD in all ranges of U₃O₈ contents. It was found that higher mixing ratios of U₃O₈ to UO₂ powder did not affect the grain size of UO₂ pellets under the addition of Nb₂O₅, but decreased the grain size of UO₂ pellets under the addition of TiO₂. The doped UO₂ pellets have grain sizes larger than 20 µm, and have small density gain after re-sintering test, owing to large pores. Therefore, the sintering agents such as Nb₂O₅ and TiO₂ can make highly densified UO₂ pellets from the powder comprising a large amount of U₃O₈ powder.

1. 서론

원자로용 UO₂ 소결체는 아래와 같은 제조공정을 거쳐서 생산된다. UF₆로부터 UO₂ 분말을 제조한 후, UO₂ 분말을 혼합하여 균질하게 한 다음, 압축 성형하여 약 50 % 이론밀도를 갖는 성형체를 제조한다. UO₂ 분말의 입자가 매우 작아서 유동성이 떨어지는 경우에는 성형하기 전에 분말을 과립화하여 분말의 유동성을 높이는 공정이 필요하다. 성형체를 수소 기체 분위기에서 1600 - 1800℃로 1-4 시간 가열하여 소결한다. 여기서 얻은 소결체의 표면을 연삭하고 세척한 후 건조한다. 제조한 핵연료 소결체에 대해서 기술시방서에 따라서 소결밀 도, 미세조직, 칫수, 외관에 대한 품질검사를 실시하여 합격한 것만이 핵연료봉 제조에 사용 된다. 소결체가 기술시방서를 충족하지 못하면 소결체는 불량(defective pellet)으로 분류된다. 제조공정에서 불량이 발생하지 않더라도 품질검사용으로 추출한 소결체는 핵연료봉 제조에 그대로 사용될 수 없기 때문에 일정한 량의 소결체가 누적된다. 또한 연삭 공정에서는 연 삭 찌꺼기가 계속 누적된다. 따라서 대량 생산 공정에서는 이것들을 핵연료 제조에 재활용 하기 위해서, 불량 UO₂ 소결체를 산화시켜서 U₃O₈ 분말을 만들어서 연삭 찌꺼기와 함께 UO₂ 분말에 혼합해서 새로운 소결체 제조에 사용한다 [1].

불량 UQ₂ 소결체를 재활용 방법을 좀더 자세히 설명하면, 재활용해야 할 소결체를 열쳐 리로에서 공기를 불어주면서 400 - 450℃ 로 가열하면 UQ₂가 U₃O₈ 으로 산화한다. U₃O₈ 은 UQ₂보다 단위 무게당 부피가 30% 크기 때문에, 산화할 때 큰 응력 이 발생해서 소결체가 쉽게 깨지므로 분말 형태의 U₃O₈을 얻는다. 산화온도가 높을수록 응력을 잘 수용하므로 U₃O₈ 분말 입자 크기가 커지고 따라서 U₃O₈ 분말의 소결성이 떨어진다. 이렇게 제조한 U₃O₈ 분말을 연삭 찌꺼기와 함께 UO₂ 분말에 혼합해서 소결체 제조에 재활용한다. 그런데 U₃O₈ 분말과 연삭 찌꺼기는 UO₂에 비해서 소결성이 나쁘고 또한 U₃O₈ 은 소결중에 환원되면서 소결체에 기공을 만든다. 따라서 이것들의 첨가량에 따라서 소결체 밀도가 감소하게 된다.

현재 상용기술은 U₃O₈을 배합하는 양이 제한되므로, 소결체 불량이 발생했을 때 불량품 을 단기간에 많이 처리해서 재활용할 수 없고 따라서 불량 소결체를 장기간 보관해야 하는 단점이 있다. 특히 불량품을 모두 처리하지 않은 시점에서 불량품과 다른 우라늄 농축도를 갖는 핵연료 소결체를 제조해야 할 경우에는 불량품을 재활용하기가 곤란하다. 최근에 드러 난 또 다른 단점으로는, 핵연료의 경제성을 높이기 위해서 소결체 기술 시방서 허용범위 안 에서 소결체 밀도를 이론밀도의 93.5- 96.5%에서 94.5-96.5% (이론밀도는 10.96 g/cm³)로 높 이고자 할 경우, U₃O₈ 분말의 배합량은 앞서 언급한 양보다 훨씬 작아지게 된다.

본 연구는 이러한 단점을 해결하기 위해서 다량의 U₃O₈ 분말을 UO₂ 분말과 혼합하여 소결할 수 있는 기술을 개발하고자 수행되었다. 본 논문에서는 UO₂ 와 U₃O₈ 혼합분말의 소 결성을 향상하기 위해서 Nb₂O₅ 및 TIO₂를 첨가하여 소결체를 제조하고 특성을 분석하였다.

2. 실험방법

AUC (Ammonium Uranyl Carbonate)를 하소해서 제조한 UO₂ 분말을 사용한다. 이 분말은 입자크기가 10-30 , , 비표면적은 4-6 m²/g, 산소 대 우라늄 비 (O/U)는 2.08-2.20, 겉보기 밀 도는 약 2 g/cm³ 이다. 하나의 입자는 0.1 , , 크기의 crystallite로 구성되어 있다.

U₃O₈ 분말은 제조하기 위해서 UO₂ 소결체를 공기중 400℃에서 2 시간 동안 산화시킨다. Cubic UO₂ 가 orthorhombic U₃O₈으로 산화되면 격자부피가 약 30% 팽창하고 이때 발생하는 응력 때문에 UO₂ 소결체는 자발적으로 분말로 변한다. U₃O₈ 분말은 200 mesh 체로 걸러서 미반응 소결체 또는 큰 응집체를 제거한다. U₃O₈ 분말의 입자크기는 8 µm로서 AUC-UO₂ 분 말의 약 1/2이다. UO₂ 분말에 U₃O₈ 분말을 중량비로 10%, 20%, 30%, 40%, 50%, 60%, 80% 를 각각 배합하고 Turbula에서 1 시간 동안 혼합한다. (UO₂+U₃O₈) 혼합분말에 Nb₂O₅ 분말을 0.2 wt%, 0.3 wt%, 0.5 wt% 첨가하고 또는 TiO₂ 분말을 0.05 wt%, 0.1 wt%, 0.2 wt% 첨가하 고 다시 1 시간 동안 혼합한다. 본 연구에서 실험한 혼합분말의 조성 및 첨가제의 변수를 표 1에 정리한다.

성형 die 벽에 zinc stearate를 도포한 상태에서 3 t/cm² 압력으로 성형하였고, 성형체의 밀 도는 5.75 g/cm³ 이다. 성형체를 시간 당 300℃로 가열하여 1680℃에서 4 시간 동안 수소 분 위기를 유지하며 소결하였다. Nb₂O₅를 첨가한 성형체를 소결할 경우 소결분위기는 수소기체 에 1% CO₂ 기체를 혼합하였다. 소결체 공기중 무게와 물속 무게, 그리고 개기공에 물을 침 투시킨 무게를 이용하여 소결밀도를 구했다.

소결체를 길이방향으로 절단하여 연삭 및 연마하여 미세조직을 관찰하였고, 열에칭을 실 시하여 결정립계를 관찰하였다. 소결체의 1700℃에서 24 시간동안 수소분위기에서 재소결한 후 밀도증가를 측정하였다.

3. 결과 및 고찰

UO₂ 분말에 Nb₂O₅가 첨가되면 소결거동이 소결분위기에 크게 좌우된다. 소결분위기가 수소, 수소+1%CO₂, 수소+3%CO₂ 일 경우 얻는 소결밀도를 그림 1에 나타낸다. 수소분위기 에서는 Nb₂O₅가 용해되지 않아서 치밀화에 거의 영향이 없고, 수소+1%CO₂ 분위기에서는 소 결밀도가 가장 높고, CO₂ 비율이 높아지면 소결밀도가 감소한다. 수소분위기에서 Nb₂O₅가 용해하지 않는 이유는 Nb₂O₅가 NbO로 환원되기 때문으로 생각된다.

UO₂ 와 U₃O₈의 혼합분말을 사용해서 제조한 UO₂ 소결체의 밀도를 U₃O₈ 배합비율에 따라서 그림 2에 나타낸다. Nb₂O₅를 첨가하지 않고 UO₂ 분말에 U₃O₈ 분말을 혼합해서 소결하 면, U₃O₈ 양에 따라서 소결체의 밀도가 직선적으로 감소한다. 밀도감소율은 10 wt% U₃O₈ 당 약 2%TD 이고, 이러한 밀도감소는 U₃O₈ 분말 자체의 비표면적이 약 0.5 m²/g 으로서 매우 작기 때문으로 생각된다. U₃O₈ 분말을 약 10 wt% 이상 배합하면 소결밀도가 93.5 %TD 이 하가 되므로 기술시방서를 벗어나게 된다.

0.2 wt% Nb₂O₅를 첨가하면 U₃O₈ 양에 따라서 소결밀도가 서서히 감소하는 거동을 보인 다. 0.3 wt% Nb₂O₅ 또는 0.5 wt% Nb₂O₅를 첨가하면, 20 wt% U₃O₈ 범위에서는 매우 서서히 감소하고 20 wt% 이상에서는 소결밀도가 거의 감소하지 않는다. 따라서 Nb₂O₅는 UO₂ +U₃O₈ 분말의 소결성을 현저히 높이는 것으로 나타났고, 그 효과는 U₃O₈ 함량이 많아질수록 그리고 Nb₂O₅의 농도가 높아질수록 커진다.

Nb₂O₅ 첨가량에 따른 소결밀도의 변화를 그림 3에 보인다. 소결밀도는 0.1 wt% Nb₂O₅에 서 약간 감소했다가 첨가량이 많아지면 증가하는 거동을 모든 U₃O₈ 양에서 나타낸다. 소결 밀도가 감소하는 이유는 큰 기공이 형성되기 때문으로 알려져 있다 [2,3]. 각 U₃O₈ 배합비율 사이의 밀도차이는 Nb₂O₅의 첨가량에 따라서 감소하는데, 0.2 wt% Nb₂O₅ 까지는 비교적 서 서히 감소하고 0.3 wt% 이상에서는 현저히 감소한다. 따라서 UO₂ +U₃O₈ 혼합분말에서 치밀 화 효과를 얻으려면 Nb₂O₅를 0.3 wt% 이상 첨가해야 함을 알 수 있다.

UO₂ +U₃O₈ 혼합분말에서 Nb₂O₅가 치밀화를 촉진하는 이유는 아직까지 알려져 있지 않 지만, U₃O₈은 소결조건에서는 UO₂ 로 환원되어 있기 때문에 그 이유는 UO₂ 분말의 경우와 차이가 없을 것으로 추정된다. UO₂ 에서 Nb₂O₅가 치밀화를 촉진하는 원인은 Nb 이온이 UO₂ 격자 속으로 들어가 고용체를 형성하면서 우라늄 공공 (vacancy)를 생성하기 때문으로 생각된다 [3,4]. 우라늄 공공이 많아지면 우라늄 확산이 빨라지므로 치밀화도 잘 일어나게 된 다.

TiO₂ 첨가된 소결체의 밀도를 U₃O₈ 배합비율에 따라서 그림 4에 나타낸다. 0.05 wt% TiO₂를 첨가하면 U₃O₈ 양에 따른 소결밀도의 감소 거동이 TiO₂가 없는 것과 아주 유사하다. 0.1 wt% 및 0.2 wt% TiO₂를 첨가하면, 30 wt% U₃O₈ 범위에서는 매우 서서히 감소하고 30 wt% 이상에서는 소결밀도가 거의 감소하지 않는다. 따라서 TiO₂는 (UO₂ +U₃O₈) 분말의 소결 성을 현저히 높이는 것으로 나타났고, 그 효과는 U₃O₈ 함량이 많아질수록 그리고 TiO₂의 첨 가량이 많아질수록 커진다. 소결밀도와 TiQ₂ 첨가량 사이의 관계를 그림 5에 나타낸다. 소결밀도는 모든 U₃O₈ 배합 비율에서 0.05 wt% TiO₂ 까지는 변화가 없고 0.1 wt% TiO₂에서 현저하게 증가한다. 이때 증 가폭은 U₃O₈ 배합비율이 높을수록 크다. 따라서 UO₂ +U₃O₈ 혼합분말에서 치밀화 효과를 얻 으려면 TiO₂를 0.1 wt% 이상 첨가해야 함을 알 수 있다.

UO₂ +U₃O₈ 혼합분말에서 Nb₂O₅가 치밀화를 촉진하는 이유는 UO₂ 분말의 경우와 차이 가 없을 것으로 추정된다. UO₂ 에서 TiO₂가 치밀화를 촉진하는 원인은 TiO₂가 UO₂와 제 2 차상을 형성하고 그 2차상이 소결조건에서 액상으로 존재하여 소결을 촉진하기 때문으로 설 명되고 있다 [5].

0.3 wt% Nb₂O₅ 첨가되고 U₃O₈ 양이 0 wt%, 20 wt%, 30 wt%, 80 wt% 인 경우에 얻는 소 결체의 미세조직을 그림 6(a)-6(d)에 차례로 보인다. 그림 6(a)와 그림 6(b)를 비교하면, U₃O₈ 이 배합되면 기공 수가 많아지는 경향을 알 수 있다. 그런데 그림 6(b), 6(c), 6(d)의 기공조직 은 매우 유사하므로, U₃O₈ 배합비율이 높아지더라도 기공 수는 영향을 받지 않는 것으로 판 단된다. 이러한 기공은 대부분 결정립계로부터 떨어져 존재한다.

0.1 wt% TiO₂ 첨가되고 U₃O₈ 양이 0 wt%, 20 wt%, 60 wt%, 100 wt% 인 경우에 얻는 소 결체의 미세조직을 그림 7(a)-7(d)에 차례로 보인다. U₃O₈ 양이 높아지면 기공 수가 현저히 증가하지만 60 wt% 이상에서는 기공 수의 변화가 거의 없다.

순수 UO₂ 에서 Nb₂O₅ 및 TiO₂ 첨가량에 따른 결정립 크기 변화에 대해서 알려진 바에 따 르면 [2], Nb₂O₅ 첨가량에 따라서 거의 선형적으로 증가하며, TiO₂ 첨가량에 따른 결정립 크 기는 0.05 wt% 까지는 거의 변화가 없고 0.1 wt%에서는 현저히 증가한다. U₃O₈ 배합비율에 따른 결정립 크기 변화를 Nb₂O₅ 및 TiO₂의 첨가량에 대해서 그림 8에 나타낸다. Nb₂O₅ 첨가 된 소결체는 U₃O₈ 양에 관계없이 거의 일정한 결정립 크기를 가지며, 0.3 wt% Nb₂O₅ 경우 결정립 크기는 약 30 µm, 0.5 wt% Nb₂O₅의 경우 약 45 µm이다. 0.1~0.2 wt% TiO₂ 첨가된 소 결체에서는 결정립 크기가 U₃O₈ 양에 따라서 약 60 µm에서 30~40 µm로 감소하다가, 40 wt% U₃O₈ 이상에서는 거의 감소하지 않는 경향을 보인다.

TiO₂ 첨가된 소결체를 재소결한 후 밀도증가를 그림 9에 보인다. 재소결후 밀도증가량은 소결밀도에 따라서 감소하는 거동을 보이며, 순수 UO₂ 소결체보다 TiO₂ 첨가된 소결체의 밀도증가량이 매우 작다. 이것은 TiO₂ 첨가된 소결체의 기공이 순수 UO₂ 소결체보다 훨씬 크기 때문으로 생각된다. 따라서 Nb₂O₅ 및 TiO₂ 첨가된 소결체의 열적 안정성이 우수하다고 판단할 수 있다.

(UO₂ + 10~100 wt% U₃O₈) 혼합분말에 Nb₂O₅ 및 TiO₂를 첨가하여 성형 소결하면, 소결 밀도가 94% TD 이상이고 결정립이 20 μm 이상이며 열적 안정성이 우수한 소결체를 제조할 수 있다. 이 기술을 사용하면 불량 UO₂ 소결체를 대량으로 재활용할 수 있기 때문에 산업 적으로 이용가치가 높다고 생각된다.

4. 결 론

불량 UO₂ 소결체를 산화해서 얻는 U₃O₈ 분말을 UO₂ 분말과 배합하고 Nb₂O₅ 및 TiO₂를 첨가하여 혼합하고, 성형, 1680℃에서 소결하여 아래와 같은 결론을 얻었다.

1) U₃O₈ 분말은 소결성이 나쁘기 때문에 UO₂ 분말과 혼합하여 소결체를 제조하면 밀도가 U₃O₈ 10 wt% 당 약 2 %TD 씩 감소한다. 그러나 Nb₂O₅ 또는 TiO₂ 첨가된 경우 소결체의 밀 도는 U₃O₈의 배합비율에 관계없이 거의 감소하지 않는다.

2) Nb₂O₅ 첨가된 소결체의 결정립 크기는 U₃O₈의 배합비율에 관계없이 일정하고, TiO₂ 첨 가된 소결체의 결정립 크기는 U₃O₈의 배합비율에 따라서 감소한다. 3) Nb₂O₅ 및 TiO₂ 첨가된 소결체의 미세조직에는 큰 기공이 형성되며, 따라서 재소결 시 험후 밀도증가가 적다.

4) 소결촉진제로서 Nb₂O₅를 0.3 wt% 이상 또는 TiO₂를 0.1 wt% 이상 (UO₂+10~100 wt% U₃O₈) 혼합분말에 첨가하면, 소결밀도가 94% TD 이상이고 열적 안정성이 우수한 소결체를 제조할 수 있기 때문에, U₃O₈을 소결체 제조에 다량으로 재활용할 수 있다.

감사의 글

본 연구는 과학기술부의 원자력 연구개발 사업의 일환으로 수행되었음.

참고문헌

[1] H. Assmann and H. Bairiot, "Process and product control of oxide powder and pellets for reactor fuel application" in "Guidebook on Quality Control of Water Reactor Fuel", IAEA TRS No. 221, pp 149–179, Vienna, 1983.

[2] 송근우 외, 원자력학회 '97 추계발표회 논문집(II), pp 43-48.

[3] K.W. Song et al, J. Kor. Nucl. Soc., 26 (1994) 484.

[4] K.C. Radford and J.M. Pope, J. Nucl. Mater., 116 (1983) 305.

[5] J.B. Ainscough, F. Rigby and S.C. Osborn, J. Nucl. Mater., 52 (1974) 191.

우라늄 산화물 분말		첨가제	
UO2	U ₃ O ₈	Nb ₂ O ₅	TiO ₂
(wt%)	-(wt%)	(wt%)	(wt%)
100	0	0.1	0.05
90	10	0.2	0.1
80	20	0.3	0.2
70	30	0.5	
60	40		
40	60		
20	80		
0	100		

표 1. 분말 조성 및 첨가제의 농도

Fig. 1. Dependence of sintered density of 0.3 wt% Nb₂O₅ doped UO₂ on oxygen potential.

Fig. 2. Sintering density of UO₂ pellets made from mixed UO₂ and U₃O₈ powder as a function of U₃O₈ content under various Nb₂O₅ addition.

Fig. 3. Sintering density of UO₂ pellets made from mixed UO₂ and U_3O_8 powder as a function of Nb₂O₅ contents.

Fig. 4. Sintering density of UO₂ pellets made from mixed UO₂ and U₃O₈ powder as a function of U₃O₈ content under various TiO₂ addition.

Fig. 5. Sintering density of UO_2 pellets made from mixed UO_2 and U_3O_8 powder as a function of TiO₂ contents.

± ỷ °G.

Fig. 6. Variations in pore structures of 0.3 wt% Nb₂O₅-doped UO₂ pellets sintered from powder mixtures of UO₂ and U₃O₈, (a) 100% UO₂, (b) 20% U₃O₈ (c) 30% U₃O₈ (d) 100% U₃O₈

Fig. 7. Microstructures of 0.1 wt% TiO_2 -doped UO_2 pellets sintered from powder mixtures of UO_2 and U_3O_8 , (a) 100% UO_2 , (b) 20% U_3O_8 (c) 30% U_3O_8 (d) 100% U_3O_8

Fig. 8. Dependence of grain size of UO₂ pellets made from mixed UO₂ and U₃O₈ powder on U₃O₈ content under various Nb₂O₅ and TiO₂ addition.

Fig. 9. Density increment due to thermal stability test.