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ABSTRACT

The use of probability distribution to represent uncertainty about point-valued probabilities has been a
controversial subject. Probability theorists have argued that it is inherently meaningless to be uncertain about a
probability since this appears to violate the subjectivists' assumption that individual can develop unique and
precise probability judgments. However, many others have found the concept of uncertainty about the probability
to be both intuitively appealing and potentially useful. Especially, high-order uncertainty, i.e., the uncertainty
about the probability, can be potentially relevant to decision-making when expert's judgment is needed under
very uncertain data and imprecise knowledge and where the phenomena and events are frequently complicated
and ill-defined. This paper presents two approaches for evaluating the uncertainties inherent in accident
management strategies: "a fuzzy probability" and "an interval-valued subjective probability". At first, this analysis
considers accident management as a decision problem (i.e., "applying a strategy" vs. "do nothing") and uses an
influence diagram. Then, the analysis applies two approaches above to evaluate imprecise node probabilities in
the influence diagram. For the propagation of subjective probabilities, the analysis uses the Monte-Carlo
simulation. In case of fuzzy probabilities, the fuzzy logic is applied to propagate them. We believe that these
approaches can allow us to understand uncertainties associated with severe accident management strategy since
they offer not only information similar to the classical approach using point-estimate values but also additional
information regarding the impact from imprecise input data.
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1. Introduction

Severe accident management involves the assessment of various phenomena under uncertain and
imprecise conditions. For each phenomenon that is poorly understood there may be several different models,
each incomplete with respect to various aspects of the strategy to be assessed. For example, liner melt-through
is one of the concerns in NUREG-1150 for BWRs [1]. NUREG-1150 considers liner melt-through as a
"possible early containment failure mechanism", even with the presence of water in the pedestal area.
However, Theofanous [2] has argued that liner melt-through under this circumstance may not be credible. The
physical processes regarding this issue are extremely complex and difficult to model. Major uncertainty is
associated with the behavior of molten debris when it leaves the vessel and interacts with the concrete and the
water in the pedestal area. Current PRA methodology uses  expert opinion in the assessment of this kind of
rare event probabilities. The problem is that these probabilities may be difficult to estimate even though
reasonable engineering judgment is applied. This occurs because expert opinion under incomplete knowledge
and limited data is inherently imprecise and uncertain. Hence, methods using point-valued probabilities
provided by experts may not adequately reflect this imprecision. This kind of characteristic in human
judgment under very uncertain situations should be reflected in the analysis of severe accident management.

The use of distribution to represent uncertainty about probabilities has been a controversial subject.
Probability theorists have argued that it is inherently meaningless to be uncertain about a probability since it
appears to violate the subjectivists' assumption that individual can develop unique and precise probability
judgments. However, many others have found the concept of uncertainty about the probability to be both
intuitively appealing and potentially useful. Especially, high-order uncertainty, i.e., the uncertainty about the
probability, could be potentially relevant to decision-making when one needs a expert's judgment under very
uncertain data and imprecise knowledge and where the phenomena and events are frequently complicated and
ill-defined.



The main purpose of this paper is to apply two famous approaches for evaluating this kind of uncertainties
inherent in accident management. These approaches are "an approach using fuzzy theory" and "an approach
using interval-valued subjective probability". The analysis includes the representation of uncertain or
imprecise probabilities in an influence diagram, and propagation of these probabilities through the diagram
and deduction of values for decision making. We believe that these approaches can allow us to increase the
understanding of  uncertainty in the PSA for severe accident management because they offer not only
information similar to the classical approach using point-estimate values but also additional information
regarding the impact from imprecise input data.

2. Decision-Oriented Framework for Accident Management

Decision analysis is a logical framework for decision making based on the principles of probability theory
and utility theory. In this paper, the influence diagram representation of a decision problem is shown as a
method to evaluate the drywell flooding strategy for BWRs[3]. Influence diagrams are a graphical and
mathematical representation of probabilistic decision problems. An influence diagram is an acyclic directed
graph, in which the variables of the decision model are represented as chance nodes and the probabilistic
dependencies among variables are represented as directed arcs among nodes. Unlike decision trees, influence
diagrams are compact and show an unambiguous representation of dependencies in a decision model. This
section describes a simple example of the application using an influence diagram and fuzzy set theory in a
decision problem.

Consider the simplified example of a PWR cavity flooding strategy as shown in Figure 1. Each circle
indicates a chance node with two outcomes. The value node depends upon the three chance nodes (WC, VB
and CF) which are defined in Figure 1.  When a reactor vessel fails with a flooded cavity, containment failure
due to an ex-vessel steam explosion is possible. When the reactor vessel fails with no water in the cavity,
containment failure due to a core-concrete interaction may occur. Suppose that  we have the following values
for the probabilities and consequences:

D WC VB CF

D: Decision                   VB: Vessel Failure 
WC: Cavity Flooding  CF: Containment Failure 
V:  Value (Expected Risk)

V

Figure 1. Example of a cavity flooding strategy

P1= P(WC|D) : the probability of successful flooding on time, given the decision to flood,
P2= WC)|P(-VB : the probability of no vessel failure given successful flooding,

P3= P( VB| WC)− − : the probability of no vessel failure given unsuccessful flooding,

P4= P( CF|VB, WC)− : the probability of no containment failure given vessel failure and successful

flooding,
P5= P( CF|VB, WC)− − : the probability of no containment failure given vessel failure and unsuccessful

flooding,
C1= consequences of no vessel failure ( = 0.0 early fatality per year),
C2= consequence for no containment failure ( = 0.0 early fatality per year),
C3= consequence for containment failure with a flooded condition, i.e., with an ex-vessel steam

explosion after vessel failure ( = 0.01 early fatality per year), and
C4= consequence for containment failure without a flooded condition, i.e., due to a CCI after vessel

failure ( = 0.01 early fatality per year).

The risk measure, conditional on the decision, can be obtained as follows:

EV (Do Nothing) = C4 (1 - P3) (1 - P5)  



EV (Flooding)   = C3  P1 (1 - P2) (1 - P4) + C4 (1- P1) (1 - P3) (1 - P5) (1)

The probabilities associated with each node can be determined using PRA methodology. In the assessment
of a conventional influence diagram, the probabilities are usually treated as point values. Hence, the
calculation is straightforward and the results can be compared directly. As already mentioned however, due to
very limited data and knowledge, it is often difficult to quantify exact values for the  probabilities regarding
these events. In this case, the analysis should handle uncertain and imprecise values. Conventional sensitivity
analysis may now be applied. However, sensitivity analysis usually varies only one variable, while the other
variables remain constant. Therefore it may not show the combined effect of uncertain input data. Also, some
variables which are correlated with each other may not be treated adequately in the analysis.

One of the natural ways of quantifying these probabilities is to use interval values. It is possible to choose
a best estimate value from the interval values by applying reasonable engineering judgment. The following is
an example:

" Due to limited knowledge, the value of probability may lie between 0.7 and 0.9. However, based on
reasonable engineering judgment, the value of 0.8 could be highly preferred as a best estimate."

 Again, conventional sensitivity analysis may not capture this kind of a confidence level expressed by an
expert. For example, the value of 0.8 represents a high confidence compared to other two values (0.7 and
0.9). Analysis should reflect this kind of confidence regarding input data.

3. Classification of Uncertainties

A higher order uncertainty is an uncertainty about one's uncertain values. First of all, we need to
distinguish between two major types of uncertainty:

a) Uncertainty due to stochastic variability, and
b) Uncertainty due to a lack of knowledge.

The first type of uncertainty is due to the actual, random behavior in some physically measurable quantity.
Examples of the stochastic variability are variations in weather, variations in component failure times from
one observation to another, and variations in consequences from one accident to another. The second type of
uncertainty is quite different from the stochastic variability. It is vagueness or imprecision in an analysis, or
stated value. The uncertainty exists because of a lack of knowledge; if we gained more information and more
knowledge, the uncertainty would decrease or would not exist. Examples of this uncertainty are uncertainties
associated with an estimated value of a value, or uncertainties in the appropriateness of an consequence
model.

The first case assesses the uncertainty when the end point is an unknown distribution of values. The
assessment end point is a true but unknown distribution of values representing random variability in the
parameters or measured data used in the model. On the other hand, the second involves a case when the end
point is a fixed but unknown value due to the imprecision in the analysists knowledge about models, their
parameters, and/or their predictions. The subjective confidence interval can be used for the unknown value in
this case. The distribution used represents a range of "degrees of belief" that the true but unknown value is
equal to or less than any value selected from the distribution.
 

This study focuses on the second uncertainty, a called "epstemic uncertainty"[4]. This uncertainty arises
that one cannot give a single value of probability about an event. Consider an event tree branch point that is
representing steam explosion occurrence after vessel failure. The traditional Bayesian view assumes precise
point-valued probabilities. In this case, one states that the yes branch  is 1 with probability p, and the no
branch with the probability 1-p. Although problems such as cognitive imprecision or vagueness about
determining this probability have been recognized, their uncertainties are not considered. The Bayesian
probability theorists have argued that it is inherently meaningless to be uncertain about a probability since this
appears to violate the subjectivists' assumption that individual can develop unique and precise probability
judgments. However, many others have found the concept of uncertainty about the probability to be both
intuitively appealing and potentially useful. Especially, high-order uncertainty, i.e., the uncertainty about the
probability, can be potentially relevant to decision-making when expert's judgment is needed under very
uncertain data and imprecise knowledge and where the phenomena and events are frequently complicated and



ill-defined.   

In recent, there are researchers who believe that the requirement for point-valued probabilities is too
strong and suggested an interval-based approach. On the other hand, a theory termed fuzzy set theory has
undergone rapid development in the past several years. Fuzzy set theory attempts to address the uncertainty
due to lack of knowledge which is not addressed by conventional approaches[5].

4. Application of a High-Order Uncertainty

 To evaluate the uncertainty of probabilities inherent in accident management strategies described in the
previous section,  two approaches are used : "an approach using fuzzy theory" and "an approach using
interval-valued subjective probability".

4.1 Representation of uncertainty

First of all, the representation of these probabilities is considered for each approach. This study uses a
simple triangular representation of these probabilities. In this representation, the modal value (i.e., a2) is
interpreted as the best -estimated value and the two values (i.e., a1and a3) are extremes in the distribution. It
gives a rational approximation with an appropriate bound for an uncertain probability. In addition, it has a
simple form and therefore is easy to handle. Also, it has a relatively small number of parameters for
estimation. These properties of the representation provide a good basis for combining information when
available information is limited.

For the fuzzy approaches, one can use the concept of "a fuzzy probability". It is called a possibility
distribution of probability, which represents an imprecise probability by means of subjective possibility
measures associated with judgment uncertainty. This can simultaneously model the probability and its degree
of possibility expressed by an expert. In this case, the value of a2 is defined as a modal value and interpreted
as the most possible value (possibility is one). The two values (i.e., a1 and a3) are considered as two extremes
and the least possible values (possibility is zero).
 

In the framework of interval-valued subjective probability, the value of a2 is called a mode and interpreted
as the best-estimated value in the range. The two values (i.e., a1 and a3) are represented as extremes in the
range. Compared with fuzzy probability, the value of a2 is not necessary to be one but the CDF of its
distribution should be one. Figure 2 depicts the triangular representation used in the two approaches.
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Figure 2. Triangular representation used in two approaches

4.2 Propagation of Uncertainty

A basic principle for the calculus of the fuzzy framework is known as the "Extension Principle" [6].
However, the implementation of the solution procedure is not trivial using this approach. The reason is that
the solution procedure corresponds to a nonlinear programming problem which is very complex, except for
the simplest mapping functions. A simple approach is to use the discretization technique on the variable



domain. However, this technique would fail and lead to irregular and fuzzier results because the min-max
operation on fuzzy sets can lead to irregular membership functions. Hence, in the present study, the
calculational procedure is implemented by the method proposed by Dong and Wong [7]. This algorithm is
based on the discretization technique on the possibility measure or membership value domain, instead of on
the variable domain, and an interval analysis. A general computational algorithm is provided below:

1) Discretize the range of possibility [0,1] into a finite number of values. Call these a1, a2, ..,an. This is
called an "α-cut" on the possibility measure domain.
2) For each value αj, find the corresponding intervals on the value domain in xi, i=1,..,N. Denote the end
points of these interval by [a1, b1], [a2, b2],..., and so on.
3) Taking one end point from each of the intervals, the end points can be combined into an N-ary array.
There are 2Ndistinct permutations, giving 2N combinations for the vector (x1, x2,..,xN).
4) Evaluate the function f(x1, x2,..,xN)for each of the  2N combinations and obtain  2N values for y. Denote
these by y1, y2,...,y2N. The desired interval for y is given by [min yk, max yk]. These points define the
support of αj-cut of the final solution.

For the propagation of the interval-valued subjective probability, this study uses a Monte-Carlo analysis
[8]. The method is based on performing evaluations with probabilistically selected input parameters, and then
using the results of these evaluations to determine both the uncertainty in model predictions and the input
variables that give rise to this uncertainty. In general, the analysis involves four steps.

In the first step, a range and distribution are selected for each input variable. These selections will be used
in the next step in the generation of a sample from input variables. In the second step, a sample is generated
from the ranges and distributions specified in the first step. The result of the step is a sequence of sample
elements of the form

xi = [x i1, xi2,...,xin],  i=1,2,..m (2)

where n is the number of input variable and m is the sample size. The most widely used sampling techniques
are random sampling, importance sampling and Latin hypercube sampling.

In the third step, the model is evaluated for each sample element shown in (2). This creates a sequence of
results of the form

yi  = ƒ (xi1 , xi2 , xi3 .., xin ) = ƒ ( xi), i=1,2,...,m (3)

In essence, these model evaluations create a mapping from the analysis input (i.e., the xi) to the analysis
results (i.e., the yi) that can be used studied in subsequent uncertainty analysis.

In the fourth step, the results are used as the basis for an uncertainty analysis. Describing uncertainty in the
output variable, y, involves the quantification of the range of y, its arithmetic mean value, the arithmetic
standard deviation of y, and upper and lower percentiles of y, such as 5 % lower and 95 % upper bound.
Convenient tools for presenting such information are the probability density function (PDF), or the
cumulative distribution function (CDF) for y.

4.3 Interpretation of results

For the purpose of the comparison, this study characterizes 3 important values for each approach.

The approach using fuzzy theory

1) Knowledge Interval

The interval of confidence of a fuzzy value is defined as the interval that contains all the elements of the
fuzzy value corresponding to any specific possibility measure. Then the specific possibility measure indicates
a degree of belief that a true value of the fuzzy quantity may exist within the interval. The endpoints of this
interval are obtained by the specific "α-cut" on the possibility measure or membership function value



domain. The knowledge interval of a fuzzy value can be obtained by zero-valued α-cut on the possibility
measure or membership function value domain. In this sense, it represents a possible maximum interval where
a true value may exist within. This value reflects the impact of the imprecise input data regarding the flooding
case. In other words, we have an imprecise or incomplete knowledge to evaluate the flooding strategy. As we
have more precise input data, the knowledge interval is reduced. Therefore, the interval is equal to zero when
we can assign the exact point values of the input data.

2) Modal Value

The peak of the possibility distributions (with a possibility value one) is called a modal value. The value is
equivalent to the value obtained by best estimate point-valued probabilities. In this respect, the modal value
can be regarded as an element with the highest confidence in the fuzzy outcome. This is why the concept of a
fuzzy probability in fuzzy logic is consistent with the classical approach using point-valued probabilities.

3) Average Index

The ranking function [9], a so-called average index of fuzzy outcome A, can be defined by

V f dpp a=∫ ( ) ( )α α
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1

(4)

By means of  VP (•) , a comparison relation on real value is built:
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We will say that A is indifferent to B if and only if their average indices coincide. In general, the
definition of function of fA  could be made arbitrarily by a decision-maker. However, the following function

is usually used:

fA
λ

 (α) = λbα  + (1-λ) aα (6)

where λ ∈ [0,1] , Aα = [aα ,bα ]. bα  and aα  are "α-cut" on the possibility distribution of A.

The parameter λ is an optimism-pessimism degree, which should be selected by a decision-maker. When
the most advantageous decision is to choose the smallest quantity (i.e., the smallest risk), an optimistic person
would think of the lower extreme of the interval aα (λ = 0) . On the contrary, a pessimistic person would

prefer the upper extreme of the interval bα (λ =1) .

In this analysis, the index proposed by Yager [10] is used, which uses λ as 
1
2 : In this case, it is assumed

that we have an "unbiased degree" to make a decision.
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The approach using interval-valued subjective probability

1)  Mean
 
 The mean is given by
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 where n = the no. of samples
 



2)  Median

The median is the value that the an result has a 50 % probability of exceeding, i.e.

F x( ) ..0 5 0 5= (9)

3)  Maximum and minimum value

These two value can be obtained after the random sampling or LHS. These are the values for the
determination of ranges of a result obtained.

5. Results

For uncertain probabilities on the influence diagram, suppose that the four probabilities; P1, P2, P4 and P5

are considered. The following interval-valued probabilities are assumed:

P1= [0.5, 0.7, 0.9]
P2= [0.7, 0.8, 0.9]
P3= [0.4, 0.5, 0.6]
P5= [0.1, 0.2, 0.3] (10)

where the central values mean best-estimated values and the other two are extreme values of the probability.
Given the four uncertain values of probabilities, the calculation is performed using Eq. (1).

Table 1 summarizes three values for the fuzzy approach in the example for both cases: "flooding" and "do
nothing".  As is seen, the value of the knowledge interval exactly reflects the impact of imprecise input data
for both cases. That is, this value for "flooding" is broader than that of "do nothing" because of the four
imprecise probabilities; P1, P2, P4, and P5. Since this value represents a possible maximum interval where a
true value may exist within, the broader interval of "flooding" means that there exists considerable uncertainty
in the result. However, even though there exists uncertainty in the results, the two values for "flooding" are

smaller than those of "do nothing": the modal value (3.1x10-3 vs. 8.0x10-3) and the average index (3.14x10-3

vs. 8.0x10-3). It is usually difficult to make a decision based on results from imprecise input data. However,
the above three values characterizing the fuzzy results for the simplified PWR cavity flooding example clearly
show that "flooding" would be preferred to "do nothing".

Table 1. Results for the fuzzy approach for the example

Knowledge Intervals Modal Values Average Indices

Flooding [1.1x10-3 , 5.4x10-3 ] 3.1x10-3 3.1x10-3 
Do Nothing [7.0x10-3 , 9.0x10-3 ] 8.0x10-3 8.0x10-3 

Table 2 shows three values for the subjective probability approach in the example for both cases:
"flooding" and "do nothing".  The min and max values in a range varies with the number of samples.
However, the mean and median values which have similar property with the average indexes and modal
values in the fuzzy approach do not show any big differences as the number of samples increases.

Table 2. Results for the interval-valued subjective probability approach for the example

Samples=1,000 Range (min. and max.) Medians Means

Flooding [1.55x10-3 , 4.77x10-3 ] 3.10x10-3 3.11x10-3 
Do Nothing [7.03x10-3 , 8.95x10-3 ] 8.0x10-3 8.0x10-3 

Samples=10,000 Range (min. and max.) Medians Means



Flooding [1.36x10-3 , 4.92x10-3 ] 3.10x10-3 3.10x10-3 
Do Nothing [7.03x10-3 , 8.95x10-3 ] 8.0x10-3 8.0x10-3 

As can be seen, it is surprised that the results show almost same between two approaches even though they
have  different ways of the representation of uncertain and calculational procedures. These approaches offer
not only information similar to the classical approach using point-estimate values but also additional
information regarding the impact from imprecise input data. However, the application for real domains is
needed to validate the interpretation of this study.
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