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Abstract

The parametric analysis method is applied to the reactor control system.  The mathematical reactor model
is discussed in terms of the parametric uncertainties.  The Tsyplin-Polyak locus, based on the boundary
crossing theorem, shows the reactor plant has an intrinsic stability.  A simple controller is incorporated to
the plant to configure the overall closed loop system.  Then parametric stability margins are obtained for
the controller constants.  The results show that a new design constraint of the controller robustness with
respect to overall system should be considered for the controller design of an uncertain system.

1. Introduction

    The fundamental problem of the control system design is to define the plant, which is to be controlled,
in an exact manner. But it is almost impossible to describe the plant exactly due to various reasons such
as linearization of the governing equations, change of operating conditions and the drift with the aging.
Even if the plant, the RLC system for an example, could be described exactly, the actual physical
properties of the components might deviate from the design values up to 50%[1].  Because of these
uncertainties, the robustness problem is drawing more attention from control fields.
    The robustness means the operation capability of the system in an actual situation with the stability and
performance as intended in design stage.  The robustness of the control system is not a new issue but has
been well known from the classic era.  The typical classic approach for the robustness is the loop shaping
by considering the frequency characteristics of plant perturbations and external noises.
    One of the modern approaches to the robust control was established by Zames in 1970's[2].  It is the H
infinity control with several offshoots such as mu-theory with the precise mathematical background.  The
H infinity control can be regarded as the optimization of the system norms in frequency domains, and its
paradigm provides a synthetic approach to robust problem, particularly for the system with unstructured
perturbations.  But for the system with parametric uncertainty, it is however quite deficient in addressing
the same issues[3].  The performance of the controller under real parameter uncertainty, as well as mixed
parametric-uncertainty, is an important issue to all of the control systems.  However H infinity or H2

optimal theory is incapable of providing a direct and non-conservative answer this problem.
   The parametric approach was first proposed in 1950's and has been developed to one of the control
theory entity with the advent of Kharitonov theorem.  This theory provides an exact solution to the
calculation of the real parametric stability margin.  Also it can be used to determine the stability of the
system under mixed parametric and unstructured perturbations and to evaluate the robust performance
measured in H infinity norm over a prescribed parametric uncertainty set.
   The nuclear reactor can be thought to have all the typical characteristics of an uncertain plant.  First of
all, the mathematically derived model has uncertainties due to the simplification with various assumptions
and linearization.  And the model itself varies depending on the operating conditions. The performance
and stability of the control system might be different from the intended ones, if the design is made with



such an inexact model.  Therefore, it is quite natural to consider the robustness of the system during the
design stage.  In this paper, the robustness of the controller has been studied by the parametric approach.
    The sensitivity of the controller constant with respect to plant parameter perturbation has been analyzed
also, and this sensitivity should be considered in addition to the existing stability criteria for the case of
uncertain system.

2. Parametric Uncertainty of Reactor Plant

    The reactor dynamics is described by use of the point kinetics equations with one group delayed
neutrons.  A singly lumped energy balance equation is incorporated to consider the moderator and fuel
temperature feedback effects on the reactivity.  Even this simple description yields the fifth order MIMO
(multi input, multi output) system.  In addition to the simplification and linearization of the governing
equations, almost all of the physical properties which constitutes the reactor model are subject to change
depending on the operating conditions, that is the reactor power, P.  These errors in modeling and inexact
properties are major causes of the system  uncertainty.
    With assumptions of that the coolant inlet temperature and coolant flow rate be constant, the  MIMO
reactor plant reduces to SISO(single input, single output) and  is described in the following linear state
variable equations[4].

 & ( ) ( ) ( )x A x B xP P P u,    y(P) C (P) Du= + = + (1)

    In addition to the physical properties which depend on the reactor power, it is found that the moderator
temperature coefficient α c , fuel temperature coefficient α f , and the fuel gap heat transfer coefficient h g

have great effects on the plant parameters.  For example, the heat transfer coefficient has a wide range of
2,500 to 11,000 w/m2 oK. And the moderator feedback temperature coefficient as well as fuel temperature
coefficient depend on the boron concentration, reactor life time, fuel temperature and rod position, so on.
The FSAR of Kori Unit 2 reads that they have the values ranging over

α c ∈ ( -57pcm/ K,   13.5pcm/ K )o o  α f ∈ ( - . pcm/ K,  - 2.8pcm/ K )  o o4 7 (2)

    For convenience, the ‘nominal’ plant is defined in this paper as the plant of hg = ⋅4 850,  w/m2 oK,

α c =  0pcm/ K  o , and α f = -3.7 pcm/ oK.  On the other hand, the ‘optimal’ plant is such a plant of

hg = ⋅10 000,  w/m K2 o , α c = -57pcm/ K  o , α f  = -4.7pcm/ Ko , and finally the ‘worst’ one has properties

of  hg = ⋅2 000,  w/m K2 o , α c =  13.5pcm/ K  o , and α f  = -2.8 pcm/ Ko .
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                                                         Figure 1. Range of Plant Parameters



    For all the cases above, the plant equations has the form of
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   Of interest is the characteristic polynomials of the plant, and Fig. 1 shows the parameter sets of
nominal, optimal and worst plants, respectively.  As shown in the figure, the parameter set
p = ( )p p p1 2 3         varies over a wide range, and each parameter has a bounded value of

p3  (1177.8    1602.6)∈ ,  p2   ( 225    1935.6 )∈ , p1 0 3  (     121.8)∈ .  (4)
  
And the nominal value at 90% power is p0

3
0

2
0

1
0  (         ) =  (1449.6    947.1   48.9 )∈ p p p .

3. Stability of the Control System

    A simple controller is incorporated based on the nominal plant at 90% power.  The controller is
designed in such a manner that the overall system output characteristics be comply with the FSAR
requirement, that is, the maximum overshoot should not exceed 103% when the steady power of 90% is
subject to 10% step increase.  The controller used in this study is C s s( ) .= +0 73 7 .  Then it is quite
natural to ask whether this controller guarantees the Hurwitz stability when the parameters have a great
degree of the uncertainty as in Eq. (4).  The characteristic polynomials of the closed loop system is

δ ( , ) ( )( )s s s s s sp = + + + + +5 4 3 22006 5140 2122 263 10 1

 + + + = +( ) ( ) ( ) ( ) ( ) ( )s p s p s p F s P s F s P s3
2

2 1 1 1 2 2                          (5)

    For the linear interval family of δ ( , ) ( ) ( ) .... ( ) ( )s F s P s F s P sm mp = +1 1   , the Hurwitz stability is
guaranteed if and only if the Tsyplin-Polyak locus in the complex plane should not cross the maximal
radius of the stability ball for all ω = ∞[ ,0    ) .  The Tsyplin-Polyak, locus is obtained from the following
equation

z
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A j
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ω
ω

µ ω= ,  where A j j( ) ( , )ω δ ω= p0  (6)

In the above equation, µ ω( )  is determined from the conditions of the zero exclusion principle.  For the
polynomials of Eq.(5), the common margin of perturbations of all parameter is found to be 1.  Figure 2
shows the Tsyplin-Polyak locus of the characteristic polynomials of Eq.(5), and it does not cross the
maximal radius of the stability ball.      
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                                 Figure 2. Tsyplin-Polyak Locus of the Characteristic Polynomial



   As shown in Fig.2, the reactor control system is Hurwitz although the parameters have a great degree of
uncertainties as of Eq.(4).  The robust stability margin of the system can be obtained by use of a weighted
lp  norm in the coefficient space.  For a family of polynomials centered at a nominal coefficient point, the

robust stability margin is a weighted lp  ball of radius ρ .

That is, for a polynomial of A s a s a s a s an n n n( ) ...= + + +− −1 1 1 0  + , the margin is
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where ak is a weight of perturbation of the corresponding coefficients.
To determine this margin, the polynomial is to be divided into even and odd parts in the frequency
domain, and the least weighted distance in the complex plane should not intersect with lp  norm radius.

    The characteristic equation of Eq.(5) is rewritten as

δ ( , ) ( ) ( ) ( )s s s p s p s p sp = + + + + + + + +5 4
3

3
2

2
12006 5140 2122 263 10  (8)

Since p0
3
0

2
0

1
0  (         ) =  (1449.6    947.1   48.9 )∈ p p p , the nominal coefficients are

a = [ ,1  2006,  6589,  3069,  312,  10]   (9)

It is assumed that max( ) min( )p p−  is applied to the perturbed terms and 20% of perturbation to other
terms. Then with Eq.(4), the perturbation weight vector is

α = [ . ,0 2  401,  525,  1711,  122,  2]   (10)

    With these coefficient and perturbation vectors, the robust stability margins of l2  norm and l∞  norm is
calculated as in Figs. 3 and 4.
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                    Figure 3.  l2  Stability Margin                                        Figure 4.  l∞  Stability Margin

    The robust stability margin has a different value depending on the applied norm.  In the above, the
robust margin is 1.6143 for the case of l2  norm, and is 1.3947 for l∞  norm.  Further, as the degree of the
perturbation, α , becomes larger, the stability becomes smaller as is expected.  Also it is to be noted that



the system is marginal stable when the locus meets the stability ball or square of above figures.

4. Robustness of Controller Parameters

    The controller applied in this study is assumed to be of PD controller.  Usually, the controller constants
or parameters are determined taking the system performance and stability into consideration.  But for the
case of which the plant has uncertainties, there is another factor to be considered.  It is the parametric
stability margin, which implies the sensitivity of controller constant with respect to overall system
stability.
    The controller has the form of C s K K sp i( ) = + .  With the assumption that Ki  has constant value of 7,

the characteristic polynomial has the arguments of parameter vector p and K p , that is δ ( , , )s p0 + ∆p  K p ,

where p0  is the nominal parameters, ∆p  is the parameter perturbations and K p  is the controller constant.

Then, the characteristic polynomial is described as

δ ( , , ) ( ) ( ) ( )s K s s p s p s p sp∆ ∆ ∆ ∆p = + + + + + + +5 4
3

3
2

2
12006 6423 2551 145

          + K s s sp ( )229 710 229 143 2+ + +  (11)

The characteristic polynomial of Eq.(11) is rewritten, by dividing into real and imaginary parts, as

0 0

0 1

2006 2551 710 13 7

6422 145 229 229

2

2

3

2

1

4 2 2

4 2 2
−

−

F
HG

I
KJ
F

H
GG

I

K
JJ=

− + + −

− + − + −

F
HG

I
KJ

ω
ω

ω ω ω

ω ω ω

∆
∆
∆

p

p

p

K K

K K

p p

p p

.
(12)

By letting this equation be AP K= , the parametric stability margin of the proportional coefficient is
found to be

µ
ω

( ) inf ( )K p
T T= −A AA K1

2
(13)

    As in the same manner, the parametric stability of the differential coefficient is obtained by fixing K p

to 0.73.  The characteristic polynomial is
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    The parametric stability margins calculated for the proportional and differential coefficients are shown
in the following figures.  Figure 5 shows that the parametric stability margin of proportional coefficients
is least around 3.7.  This means it is more desirable for the proportional constant be farther from the value
of least stability margin, although the stability is maintained for all the positive values.  This condition,
which is not shown in the existing control theory, is a new concept for the robustness design of uncertain
systems.  From the same viewpoint, it can be said that a larger value of differential constant is preferable
within the frame of prescribed performance specification.

5. Conclusion

    The stability and performance of the control system is strongly dependent on the exactness and
reliability of the plant to be controlled.  But all the real plants have uncertainties, and it is questionable
that the designed controller would work as intended in the real circumstances.  The robust control takes
all the possible uncertainties during the design process.  One of the robust controls is the parametric
analysis which can handle the system parameters directly.  Also it can be used to design the robust



controller for the system under mixed parametric and unstructured perturbations.  This parametric
approach is applied to the nuclear reactor control system.  The reactor model has a great degree of
uncertainties, hence the controller should provide a sufficient robustness to the system.  The parametric
analysis shows the reactor plant has an intrinsic stability.  However, it also shows that the controller
should be designed by taking the parametric stability margins, or sensitivity of the controller coefficients
on the system stability into account.  This is a new design constraint in addition to the existing stability
and performance analyses for the uncertain systems.
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Figure 5.  Parametric Stability Margin of K p                 Figure 6.  Parametric Stability Margin of Kd
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