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Abstract

We have introduced the alternating conditional expectation (ACE) algorithm in the method of reconstructing 20
node axial power shapes from five level detector powers. The ACE algorithm was used to find the optimal
relationships between each plane power and normalized five detector powers. The obtained all optimal
transformations had simple forms to be represented with polynomials. The reference axial power shapes and
simulated detector powers were drawn out of the 3-dimensional results of Reactor Operation and Control
Simulation (ROCS) code for various core states. By the ACE algorithm, we obtained the optimal relationship
between dependent variable plane power, y, and independent variable detector powers, {D, i=1,...,5} without any
preprocessing, where a total of ~3490 data sets per each cycle of YongGwang Nuclear (YGN) Power Plant units
3&4 are used. To test the validity and accuracy of the new method, about 21,200 cases of reconstructed axial
power shapes are compared to original ROCS axial power shapes, and they are also contrasted with those
obtained by Fourier fitting method (FFM). The average error of root mean square (rms), axial peak (AF,), and
axial shape index (AASI) of our new method for total 21204 data cases are 0.81%, 0.51% and 0.00204, while
FFM 2.29%, 2.37% and 0.00264, respectively. The evaluation results for the data sets not used in the ACE
transformations also show that the accuracy of new method is much better than that of FFM.

I. INTRODUCTION

On-line core monitoring system performs CPU-intensive works such as receiving many measurement data
from in-core and ex-core detectors and analyzing them on real-time. It provides the selected typical and
important values to operators. Based on these values, operator understands core status appropriately and does
right action to the core situation.

ABB-CE(Asia Brown Boveri - Combustion Engineering) type nuclear reactors have a digital on-line core
monitoring system, Core Operating Limit Supervisory System (COLSS)!. COLSS working on YGN
(YongGwang Nuclear) unit 3&4 in Korea receives up to 225 in-core detector signals from Plant Data Acquisition
System (PDAS) and generates 20 and 40 nodes axial power shapes to estimate DNBR and LHR every 30
seconds, respectively. To compute axial power shapes, COLSS uses Fourier series synthesis method, i.e., Fourier
fitting method (FFM). FFM is adjusted with five detector signals and cycle dependent boundary conditions,
which are selected to minimize axial peak (F,) difference and root mean square (rms) errors. Although this
deterministic method has definite applications, the accuracy of FFM tends to decrease when power shapes are
deeply saddled or highly shifted to one end of z-axis. Since overall uncertainty analysis (OUA) is performed
based on these power shapes, they have a role to reduce thermal margins. To improve thermal margin, it is
necessary to develop a new method providing more accurate axial power distribution than those of FFM. For it
seemed not easy to find any dramatic ways in deterministic approach to reduce power reconstruction error, we
introduced stochastic method, the alternating conditional expectation (ACE) algorithm>**, to attain an optimal
correlation between each plane power and five detector powers which converted from detector signals.

The ACE method is a generalized regression algorithm that yields an optimal relationship between a
dependent variable, y, and multiple independent variables, {x;, i = 1,..., N}. The objective of the ACE algorithm
is to find optimal transformations 6(y) and {¢,(x;), i = 1,...,N} that maximize the statistical correlation between
0(y) and X_,0,(x,). Generally, this object is achieved by treating each value of the transformed dependent variable
0(y) as the expectation of several realizations of the sum of transformed independent variables X_,¢(x,). Once
the optimal transformations are found by iteration, one can determine the coefficients of functional form for the
transformed dependent and independent variables through the simple regression analysis.

II. DESCRIPTION OF DATA SET

In YGN unit 3&4 reactor, the 45 in-core Rhodium detector assemblies with axially five detectors at 10%, 30%,



50%, 70% and 90% of active core height are distributed to radial direction of core. Because the signal intensity,
i.e., electric current, of Rhodium detector is proportional to neutron flux or power level around the detector,
COLSS converts these detector signals into powers at detector position. Then, COLSS reconstructs 20 or 40
node axial power shapes based on these values and evaluate DNBR and LHR limit. We would like to reproduce
these core axial power shapes by new method the ACE algorithm applied, using in-core detector information.

To apply a stochastic method on this reconstruction problem, enough simulation or measurement data sets
must be known with regard to normalized plane power and five detector powers for the various core situations.
Because it is impossible to measure core axial power shapes exactly for all cases of core conditions, we used
simulated data sets. First of all, a number of ROCS calculations are performed for various core conditions. The
independent variables are given as; Core power level (50% < P < 100%), the depth of insertion (Ocm < H,
<381cm) of control element assembly (CEA), and core average burnup (OMWD/MTU < B < 18MWD/MTU)..
From ROCS results, we generated ~ 3500 reference data sets of one-dimensional normalized axial power shapes
having same node size for each cycle and subtracted axial five level detector powers. The entire ~21000 data sets
of six cycles, having 20 node axial powers and normalized five detector powers, covering cycles of YGN unit 3
& 4 were used to get the ACE transformations. We also performed two cases of Xenon oscillation simulation,
and a total of 298 data sets generated by simulation, excluded in the ACE transformations, were used to test the
validation and accuracy of new stochastic method.

Fig. 1 shows an example of relationship between node power y and each detector powers, {D, , n=1,...,5}. All
data points plotted in figure 1, representing 3492 data sets, are generated for YGN unit 3 cycle 2. Fig. 1 shows
that it is very difficult to find initial trial functions due to the diffuse and complex nature of the relationships
between y and D,. We can find these characteristics in every axial plane for each cycle.

III. DETERMINATION OF AXITAL POWER SHAPES THROUGH ACE ALGORITHM

To estimate a maximal correlation between plane node power and five detector powers by stochastic method,
we adopted the ACE algorithm®

III.A. The Alternating Conditional Expectation Algorithm
For multivariate regression problem with a set of data {(v, D,, D,,....Ds), i=1,.,N}, the optimal
transformations of multivariate ACE algorithm is readily derived from bivarate optimal transformations as
following:
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where the optimal transformations, 6(y) and ¢,(D,),..., ¢s(Ds), are mean zero functions. These transformations are
coupled each other and solved by iterative procedure to minimize the square error of regression,
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The i’th element of optimal transformation, 6(y), means a conditional expectation at y; and is determined by
evaluating a expectation about ¢,(D)),..., ds(Ds) with the neighboring values in the interval [i-M, i+M] for a
given M. In this study, M is decided by @ which is a user defined windowing factor. Kim and Lee®* have
derived heuristically the ACE algorithm from equations (1) for a data smoothing being performed through
weighted averaging process. The overall square error is summed over the entire data sets following:
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where W, = W(y,, xj,..., Xp;) is a weight assigned to the j’th neighbor of point i and is selected so that 0 < W <
1 in the interval [i - M, i + M] and W;; = 0 outside the interval, together with the normalization LWV, = 1. Setting
the partial derivatives of Eq. (3) with respect to 6(y) and ¢,D,), respectively, to zero yields, one can derive
following equations for the i’th data point:
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Fig. 1 . The first plane power data for a total of 3,492 data points of YGN unit 3 cycle 2:
a) 20 node powers are normalized with core height, b) 5 detector powers are normalized with 100.
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where E(0%()) = 1. Equation (4) is the final form of the ACE algorithm used in this paper.

II1. B. Implementation of Alternating Conditional Expectation Algorithm
Data smoothing operation plays a key role in the ACE algorithm. We adopted a first-order locally weighted
regression method that is known to give a good accuracy. Let a first-order linear regression model, £(x;) = ax;+ b,
be an optimal function for given local data interval [i - M, i + M] centered round the i’th point. Then, the fitting
coefficients a and b can be found by minimizing the weighted square error at the i’th point:
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where

Cov(x¢); = E(xd); — E(x); E(9); = weighted covariance of x and ¢,

Var(x); = E(x*), — E(x)? = weighted variance of x,



and

E(u), = M = weighed expectation of
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u;u=xor¢d.
Finally, from Eq. (6), the data smoothing opera-
tion is represented for i’th data point as following;
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In equation (7), the function ¢ means {$p,D,),
d=1,...,5} or 6(y) and variable x means D, or y.
The overall flow of heuristic ACE algorithm is
represented in Fig. 2.

1II. C. Determination of Fitting Coefficients of
Polynomial Function for transformations

After the optimal transformations, 6(y) and
{0.D,), d=1,...,5}, were solved, we can construct
a simple regression model to obtain the
approximated polynomial functions for each
transformation, based on the least square model.
And we developed a computer code, TACE, to
perform these works.

Fig. 3 shows an example of final regression
result with regard to first plane power and five
detector powers, obtained through the TACE code.
In Fig. 3, one can see that the obtained six
transformations have very simple form to be
represented by liner polynomial functions. For
considering an extrapolation at the both boundaries
of whole detector range, we divided all
transformations into three regions. First and third
region are represented by a linear function,
fix)=ax + b, and second region is fitted by up to
9™ order polynomial function, {Zax*, k=I1,....N,
N9}, for {0(D,), d=1,...,5}. But for the second
region of transformation 6(y), a more simple func-
tion, fix) = ax’ + bx + ¢, is used to get a simple
inverse form. The range of first and third region is
decided by the variance, c°, of the difference
between transformation and its analytical solution.
If evaluated o’ is less than the criteria for initial
trial range, TACE code repeats the evaluation
process for larger data sets than trial. When the
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Fig. 2. A flow diagram of the ACE algorithm

variance o is greater than the criteria, TACE stops the evaluation and takes just previous data position as the
beginning or ending point of that region because of data sets being sorted in an ascending order. On the other
hand, we selected the best fitting polynomial order N as the one giving the minimum value of the variance. If the
variances are all within the criteria, for simple calculation, we select one which order is the lowest. All data
points within the calculated range are used when the variances are calculated. As for results, TACE code
computes up to 76 polynomial coefficients for each axial plane for a given ~ 3500 data sets of a cycle.

Fig. 3 also shows how to determine each node power and where to use the obtained polynomial functions.
For the given detector powers, axial power shapes are calculated as:

1) compute analytic solution of transformation, ¢ (D,), for each D, at current plane and sum those five values,

2) invert the transform equation y = 0! Z: 1 $4(D4)] to get plane power y

a) if the current plane is top, then normalize axial power shape with core height and exit

3) go to next plane and repeat 1) ~ 2) steps.

II1.D. Fourier Fitting Method (FFM)




To predict axial 20(up to 40) plane power shapes from five detector powers, ABB-CE applies FFM in
COLSS. The Fourier fitting function consisting of sine and cosine functions gives the power shape as

P(z) = f(n,a,,B-,COSQ,z,SINQ,z), ()
where
n  =number of mode, n=1,...,5, a, = Fourier coefficient for mode #,
0, = functional coefficients =f(B., n), z = axial elevation in fraction of core height,
and

B. = fitting parameter.
The Fourier coefficients, a,(n=1,...,5), are computed by matching the integrals over each detector to the actual
powers, PD , at the detector:

PD, = [ P@)dz, (m=1,.,5), ©
2]

where Z" and Z," are bottom and top height of m’th detector in fraction of core height, respectively. Since five
values are known, we can obtain readily the Fourier coefficients by inversion of matrix which results from the
combination of equation (9) at each five detector levels. With the appropriate boundary conditions, one can
calculate axial 20(or 40) plane power shapes. In

general, they are selected to minimize both axial Table T

peak error (AF,) and rms error resulted from

comparing to ROCS results, but in this study, we . The Comparison of new method and FFM for the data

selected them minimizing rms error only. For sets of YGN unit 3 cycle 2
comparison, the same data sets used in ACE BOC(1164 data scts)
transformations were also utilized for obtainning Avg. | Max. | Avg | Max. | Avg | Max.
the Fourier coefficients and fitting parameters. Power [ ppMS | RMS AF, AF. | aast | aasT
Level oy | o0 | o | @) | 10| x109)
IV. NUMERICAL RESULTS 100 | 0987 [ 1095 042 1551 0.195 [ 1111
(o) 2.26” 9.05 2.20 5.66 0.280 1.064
To test the validity and accuracy of the 90(%) 0.86 4.81 0.36 111 ] 0175 | 0.741
developed axial power reconstruction method, 2.09 7.73 1.70 5271 0289 ] 0.688
we reevaluated ~21,000 data sets used in ACE 80(%) 0.81 1.53 0.54 172 0310 | 1.145
algorithm. These data sets were drawn out from 1.93 2.87 1.55 457 0302 ] 0908
ROCS three-dimensional calculations for various 70(%) gg;’ zgi ?gj 2(0); 8;% (1)31553
core states. On the other hand, ~300 data sets 0'90 1‘48 0‘48 1‘63 0'323 0‘995
were taken as an another testing samples. These 50(%0) 1:89 2:25 1:39 4:57 0:29 " 0: 679
data sets were from the results of xenon- MOC(1164 data sets)
oscillation simulation performed at 50% and 131 73.03 035 Toa 1 0192 103
80% power level of BOC of YGN Unit 3 CYCIC 2. 100(0/°> 4.67 49.63 3.68 6.27 0.312 1.014
In this paper, we use a windowing factor ® = 90(% 098 | 16.99 0.38 149 | 0191 | 1.075
0.25, and a convergence criterion of 1.0E-05 ) 3.67 | 38.88 4.03 603 | 0341 1.013
both for inner and outer iterations. The CPU time 80(%) 0.83 3.02 0.64 237 | 0311 | 1.39%4
consumed to obtain the transformations of single 206 | 673] 382] 571 0333| 1139
plane with 3492 data sets is ~20min on an 7006 | 002 204 068\ 2361 02437 1.036
HP9000/735 machine. 2.93 13.68 3.02 6.25 0.288 1.099
To compare two axial power reconstruction 50(%) 0.99 173 0.62 243102921 0.999

. .. 2.44 2.9 3.00 6.21 0.292 [ 0.591
methods, we selected six quantities such as EOC(1164 data sets)

ang}m‘%rﬁ andfa‘;erage errtohr of RMS, AF; :md J0y| LZ[ A0 L0 2381 0278 [ 084
- these lactors are the main parameters 91 377| 1832 382| 628| 0271 1.02

determiging the LHR and DNBR margin as well o0 0.97 269 086 201 | 0260 | 0.657
as deciding the accuracy of reconstructed power )l 34| s19| 39| s568] 0332 1.004
shapes.

p 80(%) 1.04 1.98 0.80 1.98 0.335 0.930

3.36 9.56 3.98 5.79 0.420 1.463
IV A. Reevaluation of Data Sets 1.06 1.98 0.56 241 0277 | 0.882
We reevaluate total 21,204 data sets using the 310 553| 336| 542] 0238 | 0922
analytic functions, which was developed by the 5006) | PO 2461 0761 2841029 ) 1.073
. . . &
ACE transformations and simple regression 3"04 - 3'(f5 3.'52 6.37] 029 ] 0.639
method. We arrange the reevaluation results Xenon oscillation simulation (129 data sets) at BOC
according to core burnup and summarize them in Case 19 1.22 1.94 0.46 1.531 0287 1451
. 2.10 2.95 1.82 3.07 [ 0.375 1.018
table I and II. Table I and II show detail
. aq 0.76 1.82 0.43 0.81 0.198 1.262
comparisons of parameters for the case of YGN Case 11 9 216 358 247 307 | 0335 | 1025
unit 3 cycle 2 and oyerall comparison of Six 9 New method % FFM
parameters of two axial power reconstruction

70(%)




methods for all cases, respectively. From Table I and II, one can see that the average quantities of new method
are always less then those of FFM. The average rms errors of new method vary from 0.55% and 1.52%, while
FFM from 0.77% to 3.54%. By comparison case by case, new method’s the average rms and average AF), error is
just ~1/3 and ~1/5 of that of FFM, respectively. In spite of the fact that there are some cases including YGN3C2
MOC where FFM’s maximum error is lower, we can find that the new method has generally lower error
distributions than FFM has. If rms is defined by absolute differences between calculated TACE power and
ROCS power shape, then in all cases the maximum rms errors of new method are computed about ~1/3 of those
of FFM. For example, for the data set where the maximum relative rms error goes up to 73.6%, the new
method’s rms error which based on absolute difference is 3.94%, while that of FFM is reduced from 49.93% to
8.93%. This means that the axial shapes of new method are more similar to ROCS results. We especially note the
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results of case I and II. Because these data 1

sets were not used in the ACE trans- 0 1454 = New Method
formations, they are good samples to test the e FM

9

accuracy of developed analytic functions. In
Table I, we can observe those facts 8

mentioned above. The new method’s average & 7

rms, AF,, and AASI error for case II are S 1778

0.76%, 0.43%, and 0.00198, while those of % ; =

FFM are 2.16%, 2.47%, and 0.00335, .z —
. . S 4

respectively. Another evidence that proves 3

the superior of new method is in Fig. 4. It 3 ]

shows the error histogram of two methods 2

for all data points of YGN unit 3 cycle 2, 1
where 69,840 data points (= 3,492 data sets

—21 374 53085

4; —
_
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times . 20 a.xial powers) are arranged 0x10P 10810° 20610° 30510° 40510° 50x10° 60510
accordlpg to its error value. The ngmber of Number of Data Points
data points representing < 1% error is 53,085
in new method, while 21,374 in FFM. Fig. 4. The Comparison of Relative Error distributions
V. CONCLUSITONS
It is important to improve the accuracy of Table IIT
axial power reconstruction method, because
the accuracy is very strongly related with The Comparison of average RMS and AF, Error at Each
thermal margin. In deterministic methods Cycle for the data set at which Max. A4SI occurred.
such as Fourier fitting method or other FFM New method
functional fitting method, there are two rms AF, rms AF,
ways on that improvement. First is to (o) (%) (%) (%)
expand fitting function’s order. Second is to YGN3 C1 1.26 0.90 1.66 0.06
use more accurate fitting functions than YGN3 C2 | 2.13 3.09 1.46 1.68
present one. But existing deterministic YGN3 C3 | 213 4.03 1.33 0.38
method can not expand its order of fitting YGN3 C4 | 1.80 0.08 1.26 133
functions because there are no more YGN4C3 | 216 4.04 1.06 012
information except restricted five detector YGN4 C4 | 1.88 0.24 111 1.35
values. And for the diffuse and complex CASE 1 238 275 1.94 1.53
nature of the relationships between power CASE 11 245 341 1.76 037

shape and detector powers as shown in Fig.
1, it is more difficult to find optimal fitting
functions. In this paper, we developed a new
axial power reconstruction method based on the ACE algorithm and simple regression method. New method has
two steps for building an axial power shape: first, we calculate each plane power using detector powers. Second,
we normalize them with axial core height. It is a different point with deterministic methods that directly
reconstruct axial power shape from given detector signals.

From Table I to III, where the reevaluation results for total 21,204 data sets are summarized, we conclude that
the accuracy of new method is better than that of FFM with boundary conditions minimizing rms error and that
the new method’s power profiles are more similar to ROCS profiles even at the data sets maximum errors
occurred. The new method’s average rms errors are in the range [0.5% < avg. rms < 1.6%] and calculated ~1/3
of that of FFM. The maximum values of average AF, and A4S/ error of new method are 1.06% and 0.00295,
while FFM 3.73% and 0.0045, respectively.
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Table 11
The Overall Comparison of Six Parameters of Two Methods along with burnup rate

Total Fourier Fitting Method New Method
numoer

oipaa | o [ Mo [ea Tmal e Tt ] ae [ [ one [ [ 308 TS
S | | e | e | (0| xaoy |TSCR | OO ARG | OO | 0| (107)
YGN3CIBOC | 1164 | 0.77 1.57 0.45 1.29 0.225 0810 057 1.4 0.39 2.12 0202 | 1241
YGN3CIMOC | 1164 | 328 27.77 3.46 6.16 0.450 1443 151 23.56 1.28 4.57 0302 | 1.363
YGN3CI EOC | 1164 | 336 15.96 3.72 5.99 0.420 1.567| 1.5 27.76 0.72 3.18 0371 | 1.645
YGN3C2BOC | 1164 | 2.07 9.05 1.79 5.66 0280 | 1.064 | 0.92 11.24 0.47 3.07 0242 | 1.126
YGN3C2MOC | 1164 | 345 49.63 3.52 6.27 0313 | 1.139 1.39 76.34 0.51 241 0241 | 1415
YGN3C2EOC | 1164 | 3.40 18.32 3.73 6.37 0308 | 1.463 1.06 6.82 0.83 2.82 0297 | 1.127
YGN3C3BOC | 1163 | 1.74 2.76 1.25 4.80 0244 | 0729 |  0.60 1.43 0.32 1.59 0.186 |  0.827
YGN3C3MOC | 1163 | 251 13.30 3.30 584 | 0243 ] o0810] 074 8.31 0.69 2.67 0202 | 1.045
YGN3C3EOC | 1163 | 3.19 24.79 3.41 5.58 0252 | 1.057 0.85 5.11 0.67 2.27 0249 | 0.957
YGN3C4BOC | 1163 | 1.77 291 1.17 4.05 0296 | 0910 | 0.64 1.45 0.35 2.13 0.196 | 0.990
YGN3C4MOC | 1163 | 244 16.01 3.16 6.12 0273 | 1.022 0.83 1044 | 0.67 3.30 0236 | 1273
YGN3C4EOC | 1163 | 354 | 3941 3.66 6.58 0311 | 1.114 0.97 34.88 0.64 2.65 0220 | 0.993
YGN4C3BOC | 1164 | 1.72 2.74 1.21 4.70 0232 | 0.698 0.55 1.40 0.32 1.54 0.187 | 0.720
YGN4C3MOC | 1164 | 2.16 9.72 2.94 5.67 0.220 | 0.798 0.67 5.55 0.60 2.91 0.197 | 1.018
YGN4C3 EOC | 1164 | 3.18 24.57 3.42 5.63 0251 | 1.053 0.71 4.43 0.53 1.93 0232 | 0.956
YGN4C4BOC | 1164 | 178 2.84 1.19 4.20 0245 | 0.875 0.61 1.97 0.29 1.89 0.174 | 0.884
YGN4C4MOC | 1164 | 221 3.54 2.69 5.93 0242 | 0928 0.67 1.61 0.52 3.4 0.189 |  1.049
YGN4C4EOC | 1164 | 3.51 31.17 3.71 6.54 0297 | 1122 0.79 20.15 0.50 2.42 0.191 | 0.877
CASE I 129 2.10 2.95 1.82 3.07 0375 |  1.018 1.23 1.88 0.47 1.57 0289 | 1419
CASE Il 129 2.16 3.58 2.47 3.97 0335 | 1.025 0.85 1.79 0.46 0.83 0201 | 1229
(‘j‘vvegr' ;’ﬁ gg:s 21204  2.29 49.63 2.37 6.58 0.264 | 1.567 0.81 76.34 0.51 5.47 0.204 | 1.449

1. Case I) & II) : for data sets drawn from the simulation results of Xe-oscillation at BOC of YGN unit 3 cycle 2 at 50% and 80% power level, respectively.
2. Reference: Axial power shapes of ROCS code for given core condition
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