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Abstract

The angular dependent rebalance (ADR) factor method is extended to the two-dimensional
neutron transport problems and applied to acceleration of three nodal transport methods (i.e.,
constant-linear (C-L), simplified linear-discontinuous (SLD), and bilinear discontinuous (BLD))
and three non-nodal spatial differencing schemes (i.e., step scheme (SS), step characteristic
(5C), and constant-constant (C-C)) where the spatial distributions of the angular fluz are
assumed to be flat in mesh interior and mesh edges. In ADR, the rebalance factor is de-
fined as the ratio of the angular fluzes of the same phase point in two iterates and it is
angular dependent. In this paper, the S» approzimation for the angular dependency of the
rebalance factor is used. The resulting Sy-like lower-order equation is solved by three iterative
methods (four-cyclic (FC), conjugate gradient (CG), and bi-conjugate gradient stabilized (Bi-
CGSTAB) methods). The numerical tests show that the ADR method can be used effectively
for all tested transport methods.

1. Introduction

To reduce the computational burden of multidimensional neutron transport calculations,
a number of coarse-mesh nodal spatial differencing schemes have been devised for solving the
transport equations. As with the discrete ordinates approximation of angular variable, the
nodal transport methods requires the use of an iterative scheme for evaluation of the scattering
source term. Since the convergence of this scattering source iteration is extremely slow for
optically thick systems characterized by the scattering ratio close to unity, an acceleration
scheme must be used to speed up the convergence of the iteration procedure. The lack
of an acceleration technique has limited the usefulness of nodal Sy methods. Therefore,
acceleration of the convergence of nodal transport methods has received increased attention
recently. In the area of acceleration of the nodal transport methods, to our knowlege, three
methods are most effective. The first is Khalil’s approach! in which the lower-order equation
(diffusion model) is derived from the spatially continuous diffusion equation by applying
spatial approximations that are P; expansions of the corresponding approximations made in
solving the transport equation. He applied successfully the method to C-L nodal transport
method? in X — Y gemometry problems. The second is the boundary projection approach
developed by Lawrence® and by Adams?, independently. Lawrence successfully applied his
double- Py acceleration to several nodal transport methods in one, two, and three dimensions.




The third is the transport synthetic acceleration (TSA) method® developed by Ramone and
Adams. It avoids the “consistent differencing” issue because the lower-order equation can be
discretized exactly like higher-order transport equation.

In this paper, the ADR method®7: is extended to the discrete ordinates transport equa-
tions in X — Y geometry. The ADR method was first derived with DPy expansion of the
rebalance factor for the generally discretized transport equations in slab geometry. Since the
ADR method uses the projected transport equation onto a coarse angular space with angular
dependent rebalance factor as the lower-order equation, the ADR method avoids “consistent
differencing” and the extension to any transport method in various geometries is very easy.
At present, the Sy approximation for the angular dependency of the rebalance factor is tested
in X —Y geometry. The S>-like lower-order equation obtained by integrating the rebalance
equation over each octant is solved by the conjugate gradient (CG) method® for symmetric
lower-order operator, by the bi-conjugate gradient stabilized (Bi-CGSTAB) method® for un-
symmetric lower-order operator. For comparison, the lower-order equation is also solved by
the four-cyclic iterative method for all spatial differencing schemes.

2. Theory and Methodology

2.1. Derivation of the Lower-Order Equation

To describe the ADR method in X —Y geometry, the general discretized form of the nodal
transport methods is written in the following vector form for mesh 4,5 :
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where 97", includes the outgoing angular flux moments, :Zm incoming angular flux mo-

ments, 1/-;, j,m interior angular flux moments, q—ﬁ},j interior scalar flux moments, and 5; ; interior
inhomogeneous source moments. From now on, the indices %, j are omitted for simplicity. The
next step is introduction of a nonlinear rebalance factor. The factor is the ratio of the new
flux iterate to the previous iterate in the same phase point. Similarly to the one-dimensional
case, it is anticipated that the new iterate satisfies the balance equation and the rebalance
factor becomes unity on convergence. The Sz approximation for the rebalance factor is given
by

out or in(, ) — AT M ) _ [isger Q) € octant y @

k 1/;;'“ or in,i+1/ 2(/,,, n) 0 , otherwise,

where the index p represents a component of the vector. If all iteration indices in Eq.(1)

are changed to I + 1 and Eq.(2) is substituted into the equation, the following equation is
obtained :
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where g is the dummy index representing a component of the vector.




To obtain a lower-order equation, Eq.(3) is first multiplied by weighting functions g, (i, n)
for z-direction edge and g, (1, 7) for y-direction edge, respectively. In this paper, gz(s,7) = u
and gy(u,n) = n are used. Then, the equation is integrated for angular variables over each
octant. The resulting equation can be written in the following vector form :
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Eq.(1) and Eq.(4) compose the ADR method for general nodal Sy transport method. The
lower-order equation (i.e., Eq.(4) resembles the Sz equation and is difficult to solve by direct
inversion.

2.2. Conjugate Gradient Method and Bi-CGSTAB Method for ADR

Since the lower-order equation of the ADR method resembles the S5 equation, the con-
vergence of the scattering source iteration (SI) for solving the lower-order equation can be
extremely slow for highly scattering dominant problems. More efficient method than the scat-
tering source iteration method is the four-cyclic iterative scheme®? with an optimal estimate of
overrelaxation factor. However, this method is also slow for highly scattering dominant prob-
lems. Therefore, we proposes the conjugate gradient method for symmetric positive definite
lower-order operator (e.g., DD, SS, and SC) and the Bi-CGSTAB method for nonsymmetric
" lower-order operator. In general, the lower-order operators of the nodal transport methods
are not symmetric. To apply the Krylov subspace methods, the lower-order equations must
be rewritten as a linear operator form. The lower-order operator (Mjower)is defined as

(I - M)$ = M,5§,
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and rewritten as

I
- S

-M, (10)

s5.

I
=

T4
T
b

In Eq.(9), the linear operator M representing sweeping with the scattering source is given by
fout = U, i + V,(0,2),
2y =X\ " + Y, (0,8), v=1,2,3,4,
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and the linear operator My represents sweeping with the inhomogeneous source. The con-
jugate gradient method for the lower-order equation (i.e., Eq.(10)) of the ADR method is
described by
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In the above procedure, for symmetry of the lower-order operator, the inner product repre-
sented by < - > must be defined by
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where 7 represents z-direction mesh index, j y-drection mesh index, A7 the z-direction mesh
size, and hg the y-direction mesh size. The Bi-CGSTAB method for nonsymmetric lower-order




operator are described by
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In the above procedure, the inner product represented by < - > must be defined by
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At present, any preconditioning is not applied to the CG method and to the Bi-CGSTAB
method. For CG and Bi‘CGSTAB, the initial guess is the resulting flux (y**t1/2) of the
higher-order transport calculation.

3. Numerical Analysis and Results

For verification of the ADR method, the ADR method was applied to two benchmark
problems and numerically analyzed. In all calculations, a pointwise relative maximum error
is used as a stopping criterion of the iteration and the uniform distribution is used as the
initial guess. Although the estimations of the spectral radius and the number of iterations
are important in a view of theoretical aspect, the estimation of effectiveness is not practical if
the lower-order equation is not solved effectively. In this paper, the effectiveness of the ADR
method is estimated in terms of the number of iterations and the speedup of the computing
time with respect to the scattering source iteration (SI) method.

3.1. Two-Dimensional Version of McCoy-Larsen Problem
The first problem is a two-dimensional version of McCoy-Larsen problem (benchmark

problem I) that consists of a uniform, isotropically scattering 8em x 8cm rectangular box,
with a scattering ratio ¢ of 0.98, two reflecting boundaries at the left edge and at the bottom




edge, and two vacuum boundaries at the right edge and at the top edge. The problem
is divided into 8 x 8 meshes and the total cross section o is variable (i.e., 0.01 < ¢ <
6.0). The uniform source is distributed in the left-bottom region. In Table 1, the number
of iterations required to achieve a pointwise relative maximum error of 104 in the scalar
flux is given. In this calculation, Ss angular quadrature set is used for the ADR method
and the uniform distribution of scalar flux is used as an initial guess. However, the other
methods except the ADR method used the solution of the diffusion equation as an initial
guess. The results in Table 1 show that ADR gives nearly the same number of iterations as the
interface-current synthetic acceleration (ICSA)? and the interface-current diffusion-synthetic
acceleration (ICDSA)!? for C-L nodal transport method, and gives significant reduction in
the number of iterations for C-L, BLD, and SLD in comparison with SI.

To test ADR for more scattering dominant problems, the scattering ratio (c) is increased
to 0.999. Table 2 shows the number of iterations required to achieve a pointwise relative
maximum error of 104 and the speedup with Bi-CGSTAB for solving the lower-order equation
for this problem. The term “speedup” means the computing time ratio of ADR to SI. In Table
2, the speedup of ADR increases rapidly as the total cross section increases (i.e., as the mesh
size increases) and the speedup is significant. This aspect makes the ADR method very
effective as the acceleration of the nodal Sy transport methods.

Table 1: Comparison of the number of iterations for benchmark problem I

C-L BLD SLB

9 [TCSA [ICDSA [ADR | SI | ADR] SI |ADR] SI
0.01 4 7 4 7 4 7
0.1 5 23 7 23 5 23
1.0 4 5 4 215 5 215 4 215
2.0 4 4 4 354 5 355 4 353
4.0 4 4 4 520 5 528 4 519
6.0 4 4 4 648 5 677 4 646

Table 2: Comparison of the speedup for benchmark problem I (¢ = 0.999, Bi-CGSTAB)

i CL BLD SLD
ADR(Ss) ADR(S) ADR(Sq)
1.0 | 30.6(4%,326%) | 26.3(4,326) 27.0(4,326)
20 | 58.2(4,775) | 54.2(4,775) 55.2(4,775)
40 | 93.6(4,1521) | 104.6(4,1525) 93.6(4,1521)
6.0 | 170.3(2,2162) | 144.0(4,2172) 125.9(4,2162)

2Number of iterations with ADR, "Number of iterations with SI

Next, to compare the speedups of CG and four-cyclic iteration methods, the ADR method
is applied to three non-nodal transport methods (i.e., SS, SC, C-C) where the lower-order
operator is symmetric. The speedup and number of iterations required to achieve a pointwise




maximum relative error of 10~ are given in Table 3. The results show that the ADR method

with CG is very effective in comparison with SI.

Table 3: Comparison of the iterations and speedup for SS, SC and C-C

” SS SC C-C
CG [ FC CG FC CG [ FC
1.0 | 22.3(4,204) | 84(4) | 22.0(4,268) | 11.0(4) | 18.6(5282) | 10.3(5)
2.0 | 39.5(4,479) |12.2(4) | 50.8(4,618) | 16.9(4) | 53.0(4,645) | 16.3(4)
40 | 104.3(3,948) | 20.9(3) | 93.0(4,1134) | 23.3(4) | 126.3(4,1155) | 21.1(4)
6.0 | 145.0(3,1311) | 24.2(3) | 163.0(3,1488) | 27.2(3) | 164.3(3,1502) | 27.4(3)

3.2. The Iron-Water Benchmark Problem

The effectiveness of the ADR method is tested for a realistic situation. For this purpose,
the iron-water benchmark problem (benchmark problem II)! is chosen. This is a diagonally
symmetric, isotropically scattering, two-dimensional model shielding problem. This problem
is solved using Sg angular quadrature set and 20 x 20 mesh division and with a convergence
criterion of 107°. The results for three non-nodal methods are given in Table 4. The results
in Table 4 show that the ADR method with CG are very effective in comparison with SI. The
results for nodal methods with Bi-CGSTAB are given in Table 5. The speedup is nearly 60
for all tested nodal Sy methods and the number of iterations is very significantly reduced in
comparison with that of SI.

Table 4: Comparison of the iterations and speedup for SS, SC and C-C

. S5S5(948°,172.1%) | SC(1143,207.4) | C-C(1171,211.4)
ttems CG] FC [GG] FC |GG FC
Number of iterations 4 4 4 4 4 4
Computing time (sec) | 3.2 10.5 3.8 12.0 3.8 12.1
Speedup 53.8 16.4 54.6 17.3 55.6 17.5
¢Number of iterations with SI
bComputing time with SI on ULTRA SUN 1 computer
Table 5: Comparison of the speedup for benchmark problem II
. CL SLD BLD
items ADR| SI |ADR| SI |ADR| SI
Number of iterations 6 2089 6 2103 6 2406
Computing time (sec) { 30.9 | 1833.2 | 32.0 | 1845.5 | 135.6 | 8269.6
Speedup 59.3 1.0 57.7 1.0 60.9 1.0




4. Conclusions

The ADR method was successfully extended to the two-dimensional discrete ordinates
transport equations and applied to acceleration of three nodal transport methods (C-L, SLD,
and BLD) and three non-nodal spatial differencing schemes (SS, C-C, SC). To derive the
lower-order equation of the ADR method, the angular dependency of the rebalance factor was
approximated by S unlike D Py approximation for one-dimensional case. The resulting lower-
order equation looks like Sy transport equation. The lower-order equation was solved by the
four-cyclic, CG, and Bi-CGSTAB methods. The numerical tests show that the ADR method
can be used effectively for the discrete-ordinates transport equations in X — Y geometry.
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