KALIMER

The r mal Stress Analysis and Service Limit Check for KALIMER Reactor Internal Structures

, , , , , ,

150

KALIMER

ASME Code Case N-201-4

. Level A/B

가

.

Abst ract

In this paper, thermal stress analyses and service limit checks using ASME Code Case N-201-4 for KALIMER reactor internal structures are carried out in case of pre-determined steady state condition. From the stress analysis, severe thermal stresses occurred at the connecting parts between the separation plate/the baffle plate and the support barrel/the RV liner. From the service limit checks for the Level A and B Service Loadings using the elastic analysis method, the reactor internal structures satisfy the load-controlled quantities when the thermal barrier is introduced, but do not satisfy the deformation-controlled quantities. Therefore, the modification of the analysis conditions and the detail inelastic analysis are required to check the service limits.

1.

KALIMER(Korea Advanced LIquid MEtal Reactor)

150MWe

530°C		フ	F ⁽¹⁾ .			
				(530°C)		
	(386°C)	가			•	/
				(2)		
가	. KALIN	/IER				
(Seis	smic isolation design) ⁽	³⁾ 가				
			KAI	LIMER		
	3					
					가	•
ASME					가	427°C
(800°F)		AS	ME Code Secti	ion III, Subsection	on NG가	
ASME Code Cas	e N-201-4 ⁽⁴⁾					
KALIMER						Level
A/B						

•

2. KALIMER

Fig. 1	I-DEAS		KALIME	R	3	
		KALIME	R			(Core Support),
(Inlet	Plenum),	(Support	Barrel),		(RV	Liner),
(Baffle Plate)	, (Separation Plate),		(Flow Guide)	
KALIME	ર	Fig. 2				
				-30.0 0.0 210.0 456.0 506.0 1112.0 1112.0 1130.0 1220.0 1622.5 1717.5 1812.0 1812.	US t t t Core	550.0 EMP 1170.0 1650.0 1677.5
Fig. 1 Cone	cept ual ly	y Designed KALIMER I	RI	Fig. 2 Frimar	y Sodi un	n F I owPat h

/ / / (PSDRS) . PSDRS (Convection), (Conduction), (Radiation) . Fig. 4 COMMIX KALIMER

,

3.1

.

520°C

,

420°C (Bulk temperature) 7

386°C

가

33

Fig. 5

Fig. 6 Calculated Temp. Distribution at SP

.

. Fig. 10

. Fig.

Table 1. Calculated Thermal Stress Intensity and Strain for Steady State Condition

	With The rmal Barrier,				W/O The r mal Barri er,					
	(MPa)			(MPa)						
	No.1	No. 2	No.3	No.4	No. 5	No.1	No. 2	No.3	No.4	No.5
Membrane	21.3	49.3	51.4	91.4	26.3	48.6	54.2	58.0	118.6	26.6
Bending	55.7	144.5	109.8	127.9	125.5	106.4	165.4	125.2	151.6	135.1
Total	66.4	152.7	113.3	130.6	127.4	105.0	173.2	129.2	151.6	137.1
e _a (%)	0.059	0.147	0.143	0.146	0.167	0.092	0.166	0.162	0.166	0.178

Fig. 7 Check Part of Service Limits

Fig. 8 Stress Intensity Contour Around No.1

Fig. 9 Stress Intensity Contour around No.2

Fig. 10 Stress Intensity Contour Around No.3

NG N-201

.

(Tresca) Flow rule • ASME Code Case N-201 가 2 가 , • , 가 N-201 . (Appendix Y) (NG-3220) , NG-3000 () Appendix Y 가 . (NG-3220) , (Appendix Y) . 4.1 P_m , P_b , (P_t)7 *F*, (Fig. NG-3220.1) () , 가 Table NG-3217-1 NG Table Level A/B (Operating Basis Earthquake) (6) . <u>Check 1 :</u> $P_m \leq S_{mt}$ (1) S_{mt} (T)(t)t . Т KALIMER 30 *T*=455°C *T*=500°C 가 S_{mt} 108MPa 106MPa . Table 2

(

(1)

4) 118.6*MPa*

	Check	$\begin{array}{c} \text{Che} \\ (P_m f) \end{array}$	$\frac{\text{Check 1}}{(P_m \mathbf{\pounds} S_{mt})}$		$\frac{\text{Check 2}}{(P_m + P_b \pounds KS_m)}$		c k 3 $K_t f S_t$
	Part	P_m	S_{mt}	$P_m + P_b$	KS _m	$P_m + P_b / K_t$	S_t
	No.1	21.3	108	30.1	159	28.4	140
With	No. 2	49.3	108	80.2	159	74.0	140
Thermal	No.3	51.4	106	63.5	159	61.1	124
Barri er	No.4	91.4	108	122.1	159	116.1	140
	No.5	26.3	106	38.4	159	36.0	124
	No.1	48.6	108	57.4	159	55.7	140
W/O	No. 2	54.2	108	85.1	159	78.9	140
Thermal N	No.3	58.0	106	70.1	159	67.7	124
Barri er	No.4	118.6	108	149.5	159	143.3	140
	No. 5	26.6	106	38.7	159	36.3	124

Table 2. Service Limit Check for Load-Controlled Quantities

* P_m : Primary membrane stress due to thermal load of steady state condition

* P_b : Primary bending stress due to OBE load

가

Check 2:

$$P_{m} + P_{b} \leq K S_{m}$$

$$K \qquad (2)$$

$$K \qquad K \qquad (3)$$

$$7 + K = 1.5 7 + .$$
No.4

 S_t

(4)

.

(3)

.

 S_m

$$P_m + P_b / K_t \leq S_t \tag{4}$$

$$(T)$$

$$, \quad (t) \qquad .$$

$$K_t$$

$$K_t = (K+1)/2$$
 (5)

20%

Check 2 *K*=1.5 $K_t = 1.25$ 가 Check 1 **KALIMER** *T*=455°C *T*=500°C S_t ASME Code Case N-201-4 Table 5.3B $S_t = 140MPa, S_t = 124MPa$.

Table 3	-1	가	(4)
	Check 3		(No.4)
4.2	(427°C)		4.1
, 2)	, , 5) , 6) Isochror	1) , 3) -	가, 4)
<u>Check 1 :</u>			71
1%	<i>e</i> ≤ 1.0 %		>r (6)
Table 1 1.0% (6)	가		
Check 2 :			
		가	
, Me	mbrane $\boldsymbol{e}_{m} \leq 1.0\%$, Bending $\boldsymbol{e}_{b} \leq 2$	2.0%, Local $\boldsymbol{e}_{L} \leq 5$.	0% (7,8,9)
가 (Test No. A-1, A-2, A-3) 가	가	
<u>Test No. A-1</u>			
	$X + Y \leq S_a / S_y$		(10)
	$X \equiv \left(P_m + P_b / K_t\right)_{\max} \div S_y, \ Y \equiv$	$\equiv (Q_R)_{\max} \div S_y$	(11,12)
. (10) 2 S_y $S_y=118$ MPa(5)	S_y 500°C) . $S_a = 10^4$	<i>S</i> _y =120MPa	(455°C),

 S_{v} $S_a = \operatorname{Min}[1.25S_t, S_v]$ $1.25S_{t}$ $S_a = \operatorname{Min}[1.25S_t, S_y] =$ = Min[1.25x142MPa, 120MPa] = 120MPa Min[1.25x135MPa, 118MPa] = 118MPa (10) . $S_a/S_v = 1.0$ • (12) $(Q_R)_{\rm max}$ (Maximum range of secondary stress intensity) . 가 Startup (Table 1) 가 Hotstandby . Table 3 (10) 가 (No.4) X+Y가 14% (No.3) 12%

가 .

Table 3. Service Limit Check for Deformation-Controlled Quantities

	Check	$\frac{\text{Chec}}{(X+Y\leq$	k 1 S_a/S_y)
	Part No. 1 No. 2 No. 3 No. 4	X + Y	S_a/S_v
	No. 1	0.23 + 0.29 = 0.52	1
Wth	No. 2	0.62 + 0.79 = 1.41	1
Thern a l Barri er	No. 3	0.51 + 0.50 = 1.01	1
	No. 4	0.97 + 0.30 = 1.27	1
	No. 5	0.30 + 0.84 = 1.14	1
	No. 1	0.47 + 0.48 = 0.95	1
WO Thermal	No. 2	0.65 + 0.93 = 1.58	1
	No. 3	0.57 + 0.57 = 1.14	1
Barri er	No. 4	1.19 + 0.28 = 1.47	1
	No. 5	0.31 + 0.92 = 1.23	1

Test No. A-2

$X + Y \le 1$	(13)

$(Q_R)_{\max}$		가
가 ASME Code Case N-201-4	Table Y-1323	
(13)	•	Type 316 SS
가 544°C(1011°F)		
500°C .	(13)	Test No. A-1
$S_a/S_y=1.0$	Table 3	
Test No. A-3		

•

NG-3222

가

 t_i

$$\sum_{i} t_{i} / t_{id} \leq 0.1 \tag{14}$$
$$T_{i} ?$$

		30	가	$t_i=2$.628x10 ⁵ hr	. <i>t</i> _i	d
Т	$T_i = 1.5S_y _{T^i}$	ASMI	E Code Case N-2	201-4	Fig.5.5		
	<i>T</i> =50	0°C	$1.5S_{y} _{T^{i}} = 1801$	MPa(26	.1ksi) .	N-201-4	4
Fig.5.5 Stress	s-to-rupture						
t_{id} =4.61x10 ⁵ hr		(14)	$\sum t_i / t_i$	=0.57	7 > 0.1		
			i				
4.							
		KALIM	ER				
						ASME Code)
Case N-201-4							
		,				A SMI	7
				Loval	A/B Sorvio	. ASME	2
				Level	AD SEIVIC	e Loaunigs	

1. C. K. Park, et.al, "KALIMER Design Concept Report," KAERI/TR-888/97, *Korea Atomic Energy Research Institute*, 1997.

가

가

- G. H. Koo, el.al, "Study on Application of 3-D Seismic Isolation Design to KALIMER Reactor Structure," KAWERI/TR-1065/98, *Korea Atomic Energy Research Institute*, 1998.
- G. H. Koo, J. H. Lee, and B. Yoo, "Seismic Response Analyses of Seismically Isolated Structures Using the Laminated Rubber Bearings," *Journal of the Korean Nuclear Society*, Vol.30, No.5, pp.387-395, 1998.
- 4. ASME Boiler and Pressure Vessel Code, Section III, Division 1 Subsection NG, Core Support Structures, 1992 Edition, *ASME*, 1992.

,, ,

- 5. ANSYS User's manual for Version 5.5, Volume I,II,III, Swanson Analysis Systems, Inc.
- 6. , , , ," KALIMER , , 1999.