KALIMER

Thermal Stress Analysis and Service Limit Check for KALIMER Reactor Internal Structures

150

KALIMER

ASME Code Case N-201-4

. Level A/B

가

Abstract

In this paper, thermal stress analyses and service limit checks using ASME Code Case N-201-4 for KALIMER reactor internal structures are carried out in case of pre-determined steady state condition. From the stress analysis, severe thermal stresses occurred at the connecting parts between the separation plate/the baffle plate and the support barrel/the RV liner. From the service limit checks for the Level A and B Service Loadings using the elastic analysis method, the reactor internal structures satisfy the load-controlled quantities when the thermal barrier is introduced, but do not satisfy the deformation-controlled quantities. Therefore, the modification of the analysis conditions and the detail inelastic analysis are required to check the service limits.

1.

KALIMER(Korea Advanced LIquid MEtal Reactor)

150MWe フト

가 530°C (530°C) (386°C) 가 (2) 가 **KALIMER** (Seismic isolation design)⁽³⁾가 **KALIMER** 3 가 **ASME** 가 427°C $(800^{\circ}F)$ ASME Code Section III, Subsection NG 7 ASME Code Case N-201-4(4) **KALIMER** Level A/B 2. KALIMER Fig. 1 **I-DEAS KALIMER** 3 **KALIMER** (Core Support), (Inlet Plenum), (Support Barrel), (RV Liner), (Baffle Plate), (Separation Plate), (Flow Guide) **KALIMER** Fig. 2 -30.0 210.0 400.0 456.0 us 1112.0 1130.0 1170.0 1220.0 Core 1650.0 1717.5 1812.0. 1867.0 Fig. 2 Primary Sodi um FlowPath Fig. 1 Concept ually Designed KALIMER RI

```
2
                                                                (Primary Intermediate
Heat Exchanger)
                               (Electro Magnetic Pump)
                               (530°C)
                  (386°C)
                                                           가
                                                                  KALIMER
                                                                                가
가
                                가
            8
          KALIMER
                   (Drive fuel)
                                            가
         가
                                                                   316 SS
     1.5cm
                                             10cm
                                                                            가
                  가
3.
31
   Fig. 3
                                            1/4
ANSYS 5.5
SOILD70
                                     SOLID45
```

가

1/4 1 1.2m

3.2 / (PSDRS)

(Convection),

PSDRS

PSDRS

(Conduction), (Radiation)

COMMIX Fig. 4 KALIMER

 $Fig.\,\,3\,Finite\,Ele\,ment\,Model$ Fig. 4 Thermal Boundary Conditions

3.1 520°C

가 420°C (Bulk temperature) 가 386°C

```
가
Fig. 4
                        가
               500°C
                                            PSDRS
                                      가
                                                                 3
                                              Fig. 4
           가
33
   Fig. 5
                   가
   Fig. 6
                                     가
 Fig. 5 Calculated Temp. Distributions
                                    Fig. 6 Calculated Temp. Distribution at SP
3.4
   Fig. 7
                                                                                  Fig.
8 ~ Fig. 12
                          1)
                                                                        Fig. 8
                (
                         2)
                                   Fig. 9
                                                               . Fig. 10
```

. Fig. 11 (4) 2 7† 7† . Fig. 12 (5) 3

Table 1 ASME

Table 1. Calculated Thermal Stress Intensity and Strain for Steady State Condition

	With The rmal Barrier,				W/O The r mal Barri er,					
	(MPa)				(MPa)					
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 1	No. 2	No. 3	No. 4	No. 5
Membrane	21.3	49.3	51.4	91.4	26.3	48.6	54.2	58.0	118.6	26.6
Bending	55.7	144.5	109.8	127.9	125.5	106.4	165.4	125.2	151.6	135.1
Total	66.4	152.7	113.3	130.6	127.4	105.0	173.2	129.2	151.6	137.1
e (%)	0.059	0.147	0.143	0.146	0.167	0.092	0.166	0.162	0.166	0.178

Fig 7 Check Part of Service Limits

Fig. 8 Stress Intensity Contour Around No.1

Fig. 9 Stress Intensity Contour around No.2 $\,$

Fig. 10 Stress Intensity Contour Around No.3

Fig. 11 Stress Intensity Contour Around No.4

NG

N-201

Fig. 12 Stress Intensity Contour Around No.5

4. ASME

ASME Code 가 427°C (800 °F) Section III, Division 1 – NG 가 **KALIMER** 800°F ASME Code Section II, Part D Section III (CSS) (Rules) **ASME** Section II, Part D Subsection NG ASME Code Case N-201-4 Part A Part B ASME Code Case N-201-4 Part A Part B Subsection NG Subsection NG 가 가 Part A Stress-rupture Subsection NG Appendix XIX Time-at-temperature limits Stress-rupture Part B Stress-rupture Subsection NG . Part A Appendix XIX Time-at-temperature limits Part A Part B Part B Stress-rupture (Design Acceptability) Code NG(NG) Code N-201)가 Case N-201-4(NG ASME Section II, Part D, Subpart 1 Table 2A, 2B (S_m) N-201

```
(Tresca
                                                      Flow rule
   ASME Code Case N-201
                                    가
                               2가
                                                      가
                                       N-201
                                                                (Appendix Y)
                  (NG-3220)
              NG-3000
  Appendix Y
                            가
                                                        (NG-3220)
                        (Appendix Y)
4.1
                                                                 P_m,
                                                                              P_b,
             P_t)가
     F,
                                                        (Fig. NG-3220.1)
가
                                                           Table NG-3217-1
                                                         NG
                                                                               Table
   Level A/B
                                                            (Operating Basis Earthquake)
                (6)
Check 1:
                                       P_m \leq S_{mt}
                                                                                    (1)
        S_{mt}
                             (T)
                 (t)
                                          T
   KALIMER
                             30
                                                                             T=455°C
                                 T=500°C
                                            가
                                                     S_{mt}
                                                                108MPa
                                                                          106MPa
Table 2
                  (1)
                                            (
                                                       4)
                                                                           118.6MPa
```

(1)

Table 2. Service Limit Check for Load-Controlled Quantities

		$\begin{array}{c} \textbf{Check 1} \\ (P_m \pounds S_{mt}) \end{array}$		Che	ck 2	Check 3		
	Check			$(P_m + P_b)$	$f \in KS_m$	$(P_m + P_b/K_t \pounds S_t)$		
	Part	P_m	S_{mt}	$P_m + P_b$	KS_m	$P_m + P_b / K_t$	S_t	
	No. 1	21.3	108	30.1	159	28.4	140	
With	No. 2	49.3	108	80.2	159	74.0	140	
Thermal	No. 3	51.4	106	63.5	159	61.1	124	
Barri er	No. 4	91.4	108	122.1	159	116.1	140	
	No. 5	26.3	106	38.4	159	36.0	124	
	No. 1	48.6	108	57.4	159	55.7	140	
W/O	No. 2	54.2	108	85.1	159	78.9	140	
Thermal	No. 3	58.0	106	70.1	159	67.7	124	
Barri er	No. 4	118.6	108	149.5	159	143.3	140	
	No. 5	26.6	106	38.7	159	36.3	124	

^{*} P_m : Primary membrane stress due to thermal load of steady state condition

Check 2:

$$P_m + P_b \le K S_m \tag{2}$$

 S_m

Check 3:

Check 1

$$P_m + P_b / K_t \le S_t \tag{4}$$

 S_t (T)

, (t)

(4) K_t

$$K_{t} = (K+1)/2$$
 (5)

Check 2 K=1.5 $K_{t}=1.25$

KALIMER

 $T=455^{\circ}\text{C}$ $T=500^{\circ}\text{C}$ S_t ASME Code Case N-201-4 Table

5.3B $S_t = 140MPa, S_t = 124MPa$

가

^{*} P_b : Primary bending stress due to OBE load

Table 3. Service Limit Check for Deformation-Controlled Quantities

	Check	Check 1				
	Part -	$(X+Y \le S_a / S_y)$				
	Tart	X + Y	S_a/S_v			
	No. 1	0.23 + 0.29 = 0.52	1			
Wth	No. 2	0.62 + 0.79 = 1.41	1			
Thern a l Barri er	No. 3	0.51 + 0.50 = 1.01	1			
	No. 4	0.97 + 0.30 = 1.27	1			
	No. 5	0.30 + 0.84 = 1.14	1			
WO Thernal Barri er	No. 1	0.47 + 0.48 = 0.95	1			
	No. 2	0.65 + 0.93 = 1.58	1			
	No. 3	0.57 + 0.57 = 1.14	1			
	No. 4	1.19 + 0.28 = 1.47	1			
	No. 5	0.31 + 0.92 = 1.23	1			

Test No. A-2

$$X + Y \le 1 \tag{13}$$

 $(Q_R)_{
m max}$ 가

가 ASME Code Case N-201-4 Table Y-1323

(13) Type 316 SS

가 544°C(1011°F)

 t_i

500°C . (13) Test No. A-1

 $S_a/S_y=1.0$ Table 3

Test No. A-3

NG-3222

가 .

$$\sum_{i} t_i / t_{id} \le 0.1 \tag{14}$$

 T_i \nearrow

,

Level A/B Service Loadings

. ASME

- 가 가

- 1. C. K. Park, et.al, "KALIMER Design Concept Report," KAERI/TR-888/97, Korea Atomic Energy Research Institute, 1997.
- 2. G. H. Koo, el.al, "Study on Application of 3-D Seismic Isolation Design to KALIMER Reactor Structure," KAWERI/TR-1065/98, *Korea Atomic Energy Research Institute*, 1998.
- 3. G. H. Koo, J. H. Lee, and B. Yoo, "Seismic Response Analyses of Seismically Isolated Structures Using the Laminated Rubber Bearings," *Journal of the Korean Nuclear Society*, Vol.30, No.5, pp.387-395, 1998.
- 4. ASME Boiler and Pressure Vessel Code, Section III, Division 1 Subsection NG, Core Support Structures, 1992 Edition, *ASME*, 1992.
- 5. ANSYS User's manual for Version 5.5, Volume I,II,III, Swanson Analysis Systems, Inc.
- 6. , , , , , KALIMER , , , 1999.