Simultaneous Determination of ²²⁶Ra and ²¹⁰Pb in Water and Soil Samples by using Liquid Scintillation Counter – Suspension Method ## Abstract The simultaneously analytical method of ²²⁶Ra and ²¹⁰Pb in groundwater and soil samples by liquid scintillation counting (LSC) through the modification of the conventional isolation method of BaSO₄ precipitate has been developed. For time saving for making counting sample, suspension gel method has been also invested. In preparing samples for counting, the optimum ratio of water, gel forming agent and scintillator was 8:8:4. No variation of the counting efficiencies of ²²⁶Ra and ²¹⁰Pb was observed up to 38 days after preparation of the samples. The optimum pulse shape analysis (PSA) level for the measurement of ²²⁶Ra and ²¹⁰Pb was 95. The detection limits for ²²⁶Ra and ²¹⁰Pb in groundwater were 1.19 mBq/L and 5.24 mBq/L, respectively. The detection limits for ²²⁶Ra and ²¹⁰Pb in soil were 0.67 Bq/L and 20.6 Bq/kg, respectively. The analytical results of ²²⁶Ra and ²¹⁰Pb in spiked groundwater samples were in good accordance with the known concentration of ²²⁶Ra and ²¹⁰Pb. The analytical results of ²²⁶Ra and ²¹⁰Pb in soil reference samples were within 7.2% and 1.6% of the relative error from the reference values, respectively. 1. ``` ²²⁶Ra \alpha-spectrometry , γ-spectrometry ²²⁶Ra 가 α-Spectrometry Ra [1,2,3], ²²⁶Ra 가 ²²⁶Ra [4]. HPGe (186.1) ²²⁶Ra keV) U-235 (185.7 keV) ²¹⁴Bi (609 keV) 가 [1]. ²²⁶Ra ²¹⁴Bi 30 [1,5,6] ²²⁶Ra [1]. BaSO₄ [7]. ²¹⁰Pb ²¹⁰Pb ²¹⁰Bi Polex™ [8], 6 ²¹⁰Po ²¹⁰Pb ²¹⁰Po α-spectrometry 가 [8,9] α-Spectrometry γ- ²¹⁰P b 150-250g spectrometry [10,11,12]. ²²⁶Ra ²¹⁰Pb BaSO₄ BaSO₄ ``` 2. ``` ²²⁶Ra ²²⁶Ra 2 L [7]. Ba (25mg/ml) Pb (25mg/ml) 가 (1+1) 5g 2ml 4ml Ba(Pb)SO₄ Ba(Pb)SO₄ 0.1M EDTA (pH9.0) 10ml 가 10% 3ml 5ml Ba (BaSO₄) pH 4.2-5.0 Pb BaSO_₄ Ra 가 500ml PbSO₄ 7ml (1+1) 2g PbSO₄ 0.1M EDTA(pH 9.0) (1+1) 7ml 2g PbSO₄ 가 2 PbSO₄ ²¹⁰Pb BaSO₄ 1M EDTA (pH 9.0) 10ml 3ml 가 0.22µm membrane filter pH 4.2-5.0 Ва BaSO₄ ²¹⁰Po 20ml 1ml 50ml ²²⁶Ra 2 BaSO₄ 1g 500 °C 3 Ba (25mg/ml) (25mg/ml) Pb 2ml 10ml 10ml 가 10ml 2 (1+1) 10ml 가 가 4M 30ml 가 500ml (1+1) 10ml Ba(Pb)SO₄ 2g ``` Pb 50ml Ba (25mg/ml) (25mg/ml) 2ml 가 ²¹⁰Pb 50ml ²²⁶Ra Ва 가 Pb 2ml (25mg/ml) (25mg/ml) 60 5 ²²⁶Ra ²⁶⁶Ra , ^{210}Pb ²¹⁰Pb ²¹⁰Pb ²¹⁰Pb ²²⁶Ra (²²²Rn, ²¹⁸Po, ²¹⁴Po) ^{210}Pb 394% 72.6% 3. ²²⁶Ra ²¹⁰Pb $PbSO_4$ $BaSO_4$ ²¹⁰Pb ²¹⁰Pb ²²⁶Ra ²¹⁰Pb ²¹⁰Bi BaSO₄ $PbSO_4$ Instagel XF, UltmaGold AB 8:8:4 10°C PSA(pulse shape analysis) BaSO₄ (^{241}Am) (³⁶CI) 1000dpm 80 140 가 PSA 10 β-²⁴¹Am ³⁶CI ^{241}Am ³⁶CI 가 PSA 가 β-PSA 95 394% 72.6% Pb Ва 300%) . 2L 80% 50% α β ²¹⁰Pb | | ²²⁶ Ra | ²²⁶ Ra
²¹⁰ Pb | ²¹⁰ Pb | 0.67 Bq/kg | 1.19 mBd
20.6 Bq/l | q/L 5.24
kg . | mBq/L | |-------------------|-------------------|--|-------------------------|---------------------|------------------------------------|----------------------------------|-------------------| | | | | | 2L | ²⁶⁶ Ra | | 0.0Bq, 10.7Bq, | | 21.7Bq, 32 | .2Bq, 39.3 | Bq 가 | | | | 가 | | | 가 6.4% | | | , ²¹⁰ Pk |) | ²¹⁰ F | Pb | 가 | | | 가 | | 가 15% | | | • | | | IAEA | NIST | | | , ²²⁶ Ra | | | 7.2% | | | • | ²¹⁰ Pb | 1.6% | | | | | | | | | | | | | | | | , | | | | | | ²²² Rn | | | | | [13], | | HiSafe III | | ²²² Rn | | | | | | 10% | | 20 | [14] | | | • | | | 38 | 20- | | | | | | BaSO ₄ | | | ²² Rn 2 | % | BaSO ₄ | | | | | Jang holtz | zman[14] | 4. | | | | | | | | | | | | | ²²⁶ Ra | | | | | | D-00 | | 210 | | 71 | | 71 | | | BaSO ₄ | | ²¹⁰ F | ² D | 가 | | 가 | | | | | BaSO ₄ | Pb | SO ₄ | | | | | Insta | agel XF, Ultir | naGold AB | | 8:8:4 | - | | | | | PSA | 95 , ²²⁶ | Ra | | | 394% | | ²¹⁰ Pb | 7 | 2.6% . | 2L | | 2 | ²²⁶ Ra ²¹⁰ | Pb | | 1.1 | 9 mBq/L | 5.24 mBq | /L | 22 | ²⁶ Ra ²¹⁰ Pb | 1 | 0.67 | | Bq/kg 20 | .6 Bq/kg | | ²²⁶ Ra | ²¹⁰ Pb | 가 | | | | ²²⁶ Ra | ²¹⁰ Pb | | 가 | | | | ²²⁶ Ra | | ²¹⁰ Pb | | 7.2% 1.6 | % | | | | 38 | | ²²⁶ Ra | ²¹⁰ Pb | | | | , | | , | . - R. A. Tinker, J. D. Smith, M. B. Cooper, An Assessment of the selection criteria for an analytical method for radium-226 in environmenta samples, J. Radionanal. Nucl. Chem. Art., 193, (1995) 329-336. - T. F. Hamilton, V. M. McRae, J. D. Smith, Radium isotope determination by alpha-spectrometry after electrodeposition from solution with added rlatinum, J. radioanal. Nucl. Chem. Art. 177, (1994) 365-371. - 3. H. Higuchi, M. Uesugi, K. Satoh, N. Ohashi, Determination of radium in water by liquid scintillation counting after preconcentration with ion-exchange resin, Anal. Chem., 56, (1984) 761-763. - 4. G. J. Hancock, P. Martin, Determination of Ra in environmental samples by α-spectrometry, Appl. Radiat. Isot., 42, (1991) 63-69. - 5. J. Michel, W. S. Moore, P. T. King, γ -Ray spectrometry for determination of radium-228 and radium-226 in natural waters, Anal. Chem., 53, (1981) 1885-1889. - 6. M.T. Crespo, A.S. Jimenez, J. Radioanal Nucl Chem., 221, (1997) 149. - 8. T. Suzuki, A. Maki, K. Ohta, K. Kamiyama, Determination of lead-210 in an ice core from an arctic glacier by an alpha-ray measurement, Anal. Sci., 12, (1996) 923-926. - 9. G. Wallner, K. Irlweek, Determination of lead-210 and its progenies in aerosol fractions of different particles sizes, Radiochem. Acta, 78, (1997) 173-176. - 10. G. Yener, I. Uysal, Low energy scintillation spectrometry for direct determinations of ²³⁸U and ²¹⁰Pb in coal and ash samples, Appl. Radiat. Isot., 47, (1996) 93-96. - 11. R. A. Zielinski, J. R. Budahn, Radionuclides in fly ash and bottom ash: improved characterization based on radiography and low energy gamma-ray spectrometry, Fuel, 77, (1998) 259-267. - 12. C. Hardaway, W. Sheu, H. R. Meriwether, J. Sneddon, J. N. Beck, The effect of diagenetic processess on the radiochronology of soft sediments using ²¹⁰Pb and ¹³⁷Cs - 13. , , , , , , , , , 20 , (1995) 103-115. - 14. H. Jiang, R. B. Holtzman, Simultaneous determination of ²²⁴Ra, ²²⁶Ra, and ²²⁸Ra in large volumes of well waters, Health Phys., 57, (1998) 167-168. Fig. 1. A Procedure for determination of ²²⁶Ra and ²¹⁰Pb by suspension method with LSC. Table 1. The analytical results of ²²⁶Ra in reference samples | Sample name | Analytical activity
(Bq/kg) | Reference value
(Bq/kg) | error (%) | Chemical yield (%) | |-------------|--------------------------------|----------------------------|-----------|--------------------| | IAEA Soil-6 | 75.6 ± 6.5 | 79.92 | -5.4 | 88.6 | | IAEA-135 | 25.4 ± 1 | 23.9 | 6.3 | 94.0 | | IAEA-300 | 54.6 ± 2.3 | 56.5 | -3.4 | 83.6 | | IAEA-312 | 283.2 ± 4.3 | 269 | 5.3 | 88.6 | | IAEA-375 | 20.6 ± 2 | 19.9 | 3.6 | 83.2 | | NIST4350B | 33.2 ± 1.7 | 35.8 | -7.2 | 92.9 | Table 2. The analytical results of ²¹⁰Pb in reference sample | Sample name | Analytical activity (Bq/kg) | Reference value
(Bq/kg) | error (%) | Chemical yield (%) | |-------------|-----------------------------|----------------------------|-----------|--------------------| | IAEA 300 | 354 ± 20 | 360 | 1.6 | 67.4 |