

Determination of Correction Factors for Conservative Prediction of Spent Fuel

ABSTRACT

Depletion calculations have been performed for 54 PWR spent fuel samples using SAS2H (Shielding Analysis Sequence No.2) module of SCALE4.4 with 27 group, 44 group and 238 group cross section libraries, respectively. Therefrom, ratios of measured to calculated isotopic concentrations have been obtained and used to calculate the correction factors of 38 nuclides for using 27 group, 44 group and 238 group libraries, respectively.

It is revealed that the correction factors of all nuclides but Sm-152, Eu-153, Pu-238, Pu-239, Pu-241 and Am-241 in the case of the 238 group library are closer to 1.0

`99

than the existing values.

1.

. Hermann [1] 1995 19 SAS2H (Shielding Analysis Sequence No.2) 1996 DeHart [2] 38 . 39 . DOE 1997 54 10 [3]. SCALE4.2 . 가 SCALE4.4[4] 가 . 가 54 PWR SCALE4.4 SAS2H [4] 27 , 44 238 ,

2.SAS2H

SAS2H Fig.1		OR I GEN - S		
BONAMI-NITWAL_II-XSDRNPM-COUPLE	[4]			
			가	1

•

OR I GEN - S		1000					
	. Fig. 1			LW	R		
PRLIMLWR	[4]		. 가				Fig.
1					COUPLE	[4]	
PRLIMLWR		(update))	1				

•

. ORIGEN-S

7 Table 1 54 SAS2H [1,2,3]. 2.453 wt% 3.897 6.92 GWd/tU 46.6 GWd/tU w t % . 10 , 3936 가 , 14x14, 15x15 18x18 . 4. 가. 38 SAS2H 27 , 44 238 () . Fig. 2 3 U-235 Pu-239 [1,2,3] .Fig. 23 27 44 1.0 . 238 , • . 가 Fig. 2 3 , 27 , 44 238 - , , . . 1 가 . 가 . () ORNL 27 [2] . Fig. 4 27 , Fig. 5 ORNL 44 [2] 44 238 . 1.0 가 (error bar) . 1.0 . . 1.0 .) . 1.0 (가 ORNL ORNL . 5 % 가 5 %

27 Sm-149, Sm-152, Pu-238, Pu-239, Pu-240, Pu-241, Am-241 Am242m . Sm-149 8.3 % 5 % , 7 2 % 가 ORNL 27 , ORNL 27 44 Sr-90, Sm-149, Sm-152, Eu-153, U-235, Pu-238, Pu-239, Pu-2 % 241 Am-241 . 가 , . ORNL ORNL 44 44 238 Sm-149, Sm-152, Eu-153, Pu-238, Pu-239, Pu-241 Am-241 . 가 Sm-149 Pu-238 가 1 % . , 238 ORNL 44 44

•

(2)

(3)

.

38

•

 $\overline{X} - T_{95/95} \cdot s \le \frac{E'}{C'} \le \overline{X} + T_{95/95} \cdot s \tag{1}$

(

[5,6].

Table 2

.

(1) $T_{95/95}$ 95 % 95 % (Tolerance Limit Factor) [7]. C' E' . (1) (C') , (C')

$f_{\rm fissile} = \overline{x} + T_{95/95} \cdot s$		(2)
$f_{\text{non-fissile}} = \overline{x} - T_{95/95} \cdot s$		(3)
	95 %/95 %	

Tab	ole 2	238	ORNL 44						
	,			Sm-152,	Eu-153,	Pu-238,	Pu-239,	Pu-241	Am-241
			가 1.0						
	SAS2H					Table	2		
95	%								
5.									
	SCALE4.4	SAS2H	27 , 44	238				38	
								가	
					-	7 ŀ			
					SF				

- O. W. Hermann, S. M. Bowman, M. C. Brady, and C. V. Parks, "Validation of the Scale System for PWR Spent Fuel Isotopic Composition Analyses," ORNL/TM-12667, Oak Ridge National Laboratory (1995).
- M. D. Dehart and O. W. Hermann, "An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions for PWR Spent Fuel," ORNL/TM-13317 (1996).
- Meraj Rahimi, "Isotopic and Criticality Validation for PWR Actinide-only Burnup Credit," DOE/RW-0497, U.S. Department of Energy (1997).
- S. G. Ro, "Development of Advanced Spent Fuel Management Process : Criticality Safety Analysis fo Integrated Mockup and Metallized Spent Fuel Storage," KAERI/TR-1250/99 (1999).
- 5. S. G. Ro, "Development of Advanced Spent Fuel Management Process," KAERI/RR-166/96, KAERI (1996).
- R.E. Walpole and R.H. Myers, Probability and Statistics for Engineers and Scientists, 5th ed., Prentice Hall, New York (1993).
- 7. Robert E. Odeh and D. B. Owen, Table for Normal Tolerance Limits, Sampling Plans, and Screening, Marcel Dekker, Inc., New York (1980).

Reactor	Assembly ID	Calculatio n ID	Enrichment (U-235 wt%)	Burnup (GWd /tU)	Cooling Time (d)	Pellet Density (g/cm ³)	Lattice Array	Rod No.	Active Fuel Length
			2 400	15.05	201.5	10.10	10 10	205	(cm)
	E6-C-16	YKI	3.400	15.95	281.5	10.18	18 × 18	305	230.05
	E6-C-f6	YK2	3.400	30.39	281.5	10.18	18×18	305	230.05
	E6-C-f6	YK3	3.400	31.33	281.5	10.18	18×18	305	230.05
Yankee	E6-C-f6	YK4	3.400	20.19	281.5	10.18	18×18	305	230.05
rowe	E6-SE-c2	YK5	3.400	32.03	281.5	10.18	18×18	305	230.05
	E6-SE-c2	YK6	3.400	31.41	281.5	10.18	18×18	305	230.05
	E6-SE-e4	YK7	3.400	35.97	281.5	10.18	18 × 18	305	230.05
	E6-SE-e4	YK8	3.400	35.26	281.5	10.18	18 × 18	305	230.05
	86b02	MI1	3.208	8.30	1825	9.996	15 × 15	204	365.76
	86b03	MI2	3.208	6.92	1825	9.996	15 × 15	204	365.76
	86g05	MI3	3.208	15.36	1825	9.996	15 × 15	204	365.76
Mihama.3	86g03	MI4	3.203	21.29	1825	9.996	15 × 15	204	365.76
Williama-5	86c03	MI6	3.203	29.50	1825	9.996	15 × 15	204	365.76
	87c04	MI7	3.210	32.20	1825	9.996	15 × 15	204	365.76
	87c07	MI8	3.210	33.71	1825	9.996	15 × 15	204	365.76
	87c08	MI9	3.210	34.32	1825	9.996	15 × 15	204	365.76
	509-104-M11- 7	TR1	3.897	12.04	10	10.035	15 × 15	221	264.1
	509-032-E11-4	TR2	3.130	15.38	10	10.035	15 × 15	221	264.1
	509-032-E11-7	TR3	3.130	15.90	10	10.035	15 × 15	221	264.1
	509-032-E11-9	TR4	3.130	11.53	10	10.035	15 × 15	221	264.1
	509-069-E11-1	TR5	3.130	12.86	10	10.035	15 × 15	221	264.1
Trino	509-069-E11-2	TR6	3.130	20.60	10	10.035	15×15	221	264.1
Vercelles	509-069-E11-4	TR7	3.130	23.72	10	10.035	15×15	221	264.1
e	509-069-E11-7	TR8	3.130	24.30	10	10.035	15 × 15	221	264.1
	509-069-E5-4	TR9	3.130	23.87	10	10.035	15×15	221	264.1
	509-069-E5-7	TR10	3.130	24.55	10	10.035	15×15	221	264.1
	509-069-L11-4	TR11	3.130	23.93	10	10.035	15×15	221	264.1
	509-069-L11-7	TR12	3.130	24.36	10	10.035	15×15	221	264.1
	509-069-L5-4	TR13	3.130	24.33	10	10.035	15 × 15	221	264.1
	509-069-L5-7	TR14	3.130	24.31	10	10.035	15×15	221	264.1
	D047-MKP109	CA1	3.038	27.35	1870	10.036	14 × 14	176	347.22
	D047-MKP109	CA2	3.038	37.12	1870	10.036	14 x 14	176	347.22
	D047-MKP109	CA3	3.038	44.34	1870	10.036	14 x 14	176	347.22
Colvert	D101-MLA098	CA4	2 720	18.68	2374	10.036	14 × 14	176	347.22
Cliffs	D101-MLA098	CA5	2.720	26.62	2374	10.036	14 x 14	176	347.22
Units 1	D101-MLA098	CA6	2.720	33.17	2374	10.036	14 x 14	176	347.22
	BT03-NBD107	CA7	2.720	31.40	2374	10.036	14×14 14 × 14	160	347.22
	BT03-NBD107	CA8	2.453	37.27	2447	10.036	14×14	160	347.22
	BT03-NBD107	CAO	2.453	16.46	2447	10.030	14×14	160	247.22
	D01_G9		2.455	30.72	027	10.030	1 + x + 1 + 15 = 15 = 15	204	365.8
	D01-G10		2.550	30.72	927	10.235	15 × 15	204	365.9
Turkey	D01-010		2.550	31.56	927	10.235	15 × 15	204	365.9
point 3	D01-119		2.330	31.30	927	10.235	15 × 15	204	365.0
	D04-09	1 K4 TV 5	2.330	31.20	927	10.235	15 × 15	204	365.0
	NOP S	I KJ PO1	2.330	16.00	2026	0.044	15 4 15	204	265 0
	IN-9B-5	ROI DO2	2.360	10.02	3930	9.944	15 × 15	204	265.8
H.B. Dobinger	N-9B-N	K02	2.560	25.81	3936	9.944	15 × 15	204	305.8
Kobinson	N-9C-J	RO3	2.560	28.47	3631	9.944	15×15	204	365.8
	N-9C-D	RO4	2.560	31.66	3631	9.944	15×15	204	365.8
Obrighei	170-94	OBI	3.130	25.93	10	9.742	14×14	180	295.6
ш	172-92	OB2	3.130	26.54	10	9.742	14 × 14	180	295.6
	176-91	OB3	3.130	27.99	10	9.742	14 x 14	180	295.6

Table 1. Operating Parameters for 54 Spent PWR Fuel Samples

168-86	0B4	3.130	28.40	10	9.742	14 x 14	180	295.6
171-89	0B5	3.130	29.04	10	9.742	14 x 14	180	295.6
176-90	OB6	3.130	29.52	10	9.742	14 x 14	180	295.6

Nuclide	ORNL(SCALE	ORNL(SCALE4.2, 38 Samples)) This Study (SCALE4.4, 54 Samples)		
	27 Group	44 Group	27 Group	44 Group	238 Group	
Se-79	0.621	0.621	0.622	0.620	0.620	
Sr-90	0.909	0.910	0.939	0.937	0.941	
Tc-99	0.594	0.590	0.593	0.592	0.582	
Ru-106	0.730	0.696	0.716	0.720	0.714	
Sn-126	0.138	0.142	0.141	0.140	0.139	
I-129	0.702	0.701	0.684	0.716	0.684	
Cs-133	0.928	0.907	0.940	0.918	0.903	
Cs-134	0.905	0.940	0.901	0.935	0.963	
Cs-135	0.820	0.859	0.851	0.902	0.888	
Cs-137	0.957	0.958	0.958	0.958	0.959	
Ce-144	0.877	0.871	0.867	0.867	0.877	
Nd-143	0.930	0.962	0.959	0.972	0.958	
Nd-144	0.957	0.946	0.987	0.969	0.987	
Nd-145	0.981	0.973	0.985	0.977	0.981	
Nd-146	0.953	0.939	0.988	0.980	0.987	
Nd-148	0.954	0.954	0.969	0.970	0.969	
Nd-150	0.825	0.823	0.899	0.899	0.899	
Sm-148	0.938	0.967	0.962	0.986	1.025	
Sm-149	0.000	0.000	0.000	0.000	0.000	
Sm-150	0.625	0.619	0.643	0.640	0.644	
Sm-152	0.775	0.755	0.557	0.562	0.735	
Eu-153	0.601	0.641	0.665	0.566	0.570	
Eu-154	0.669	1.061	0.667	1.043	0.999	
U-234	0.622	0.635	0.738	0.754	0.756	
U-235	1.101	1.085	1.109	1.108	1.073	
U-236	0.909	0.910	0.913	0.914	0.916	
U-238	0.992	0.992	0.990	0.990	0.990	
Np-237	0.622	0.697	0.643	0.717	0.749	
Pu-238	0.814	0.856	0.853	0.906	0.918	
Pu-239	1.048	1.076	1.086	1.113	1.077	
Pu-240	1.009	0.945	1.013	0.967	0.949	
Pu-241	1.014	1.087	1.085	1.156	1.118	
Pu-242	0.962	0.848	0.969	0.882	0.876	
Am-241	0.583	0.609	0.510	0.548	0.556	
Am-242m	0.405	0.462	0.459	0.528	0.505	
Am-243	0.883	0.804	0.868	0.799	0.795	
Cm-242	1.086	1.168	1.105	1.240	1.215	
Cm-244	1.192	0.973	1.179	0.981	0.917	

Table 2. Conservative Correction Factors for 38 Nuclides

Fig. 1. Computational Flowchart of SAS2H Procedure.

Fig. 2. Measured to Calculated Ratio of U-235 Concentration for 54 Spent PWR Fuel Samples.

Fig. 3. Measured to calculated Ratio of Pu-239 Concentration for 54 Spent PWR Fuel Samples.

Fig. 4. Comparison of Average Ratios(Measured/Calculated) in the Case of 27 Energy Group.

Fig. 5. Comparison of Average Ratios(Measured/Calculated) in the Cases of 44 and 238 Groups.