Valence control of Ce(III) and mutual separation of Ce and Eu by solvent extraction

Abstract

Fundamental investigations on preparation of Ce(IV) in nitric acid solutions were carried out in order to selective extraction of Ce(IV) as a first step the Am/lanthanide separation. Ce(III) is oxidized into Ce(IV) in the presence of oxidant, (NH₄)₂S₂O₈, and with a catalyst, AgNO₃, in nitric acid solution. The yield of Ce(IV) decreased with increased HNO₃ concentrations and (NH₄)₂S₂O₈ concentration up to 0.1 M. The maximum yield of Ce(IV) was found in the 0.01M concentration of AgNO₃. The sequence of effective extractants for the Ce extraction yields were 2r-DEHPA ≥ DEHPA > TBP. Oxidation of Ce(III) to Ce(IV) was performed below the 2 M HNO₃ and Ce(III)/Ce(IV) extracted with 1M DEHPA, 2r-1M DEHPA and 1M TBP in above the 5 M HNO₃. Finally, extracted Ce(III)/Ce(IV) in organic solvent was stripped with reductant H₂O₂/HNO₃ solution. These results could be use in the development of mutual separation process of Am and lanthanide elements contained in the radioactive liquid waste solution.
1. 서론

방사성 엽체폐기물(HLLW)중에는 초우라늄(TRU) 원소인 Np, Am, 및 Cm이 함유되어 있는 폐기물이 발행한다. 초우라늄 원소인 Np, Am, 및 Cm 들은 방출된자들처럼 가는 방출물에 의한 추가 폐기물은 경건한 실물 관리량을 한다. 경건한 실물 관리량은 대형의 폐기물로 보아 방사성 폐기물로부터 분리한 다음 방출전하의 폐기물에 보다 소열처리 하는 방안이 제시되고 있다. 그리고 소열처리를 위해 TRU 함유 핵자료를 연소시키기 위해서는 RE (rare earth) 계열의 Gd와 Sm과 같은 중성자 독(neutron poison)을 TRU와 분리 제거시켜야 한다. RE의 분리 제거는 TRU 원소의 고체화시킬 경우에 비럴도가하다. 본 연구팀은 방사성 엽체폐기물중 액티늄족과 탄산족의 대표원소 각각 Am과 Eu를 선택하여 용매추출법에 의한 이들 원소의 방사분리에 대해서 연구하고 있다[1]. 성능이 알려진 대표적인 추출제로는 DEHPA, CMPO, DIPPA, TRPO, Cyanex 301, TPTZ 등 있으나 액틴족과 탄산족 원소는 이들 추출제에 대한 합작적 기능이 매우 우수하여 공추출(co-extraction) 되거나 또는 탄산 (decarb)이 필요하는 등 상호분리에 어려가지 여려움이 많다. 그리고 고온의 엽체폐기물에는 이들 탄산족 원소의 함량이 Am 함량의 10배 이상 많기 때문에 Am과 유토로우상소재의 공추출로 인해 TRU 폐기물의 부가가 증가한다. 따라서 Am을 방사성 엽체폐기물로부터 분리하고 또한 Am을 유토로우상소재 과 상호 분리하는 방법에 대한 연구가 필요하다. 지금까지 Am의 분리수소는 새로운 개발된 추출제를 사용하거나 알칼리골 추출액에 DTPA 저착제를 사용하는 방법등 많은 방법이 Am(III)과 RE(III)을 효과적으로 분리할 수 있었다. 그 중에서도 본 연구팀이에서는 DEHPA추출제와 DTPA 저착제를 사용하여 액티늄족과 탄산족원소의 상호분리공정을 중점적으로 연구하고 있다. 이 공정은 방사성폐기물은 TEP 추출공정→탈립공정→DEHPA 추출공정→Am, 탄산족 원소 Np를 3 단계 연속으로 선택적으로 역추출하여 공정으로 구성되어 있다. 용매물질인 방사성폐기물의 질산동도는 2M 정도인데 탄산공정에서 0.1M으로 탄실해야 하는데 이 Am 추출공정에서 효과적인 추출이 이루어지는데 0.1M까지 탄실하려는데 어려움이 있어 가능한 한 탄실한 후의 질산동도를 높이거나 또는 탄실공정 자체를 거치지 않고 직접 추출공정으로 넘어가는 탄실공정 개선연구를 하고 있다. 현재 두기까지 방향에서 연구가 진행되고 있는데, 첫째는 DEHPA 추출제와 비슷한 성질이 가지면서 DEHPA보다는 높은 질산동도에서 액티늄족과 탄산족원소를 추출할 수 있는 CMPO, 2r 합성 DEHPA(이하 2r-DEHPA로 표기) 등의 추출제에 대한 연구, 두째는 췌자액도 탄산족원소가 질산배열에서 +3가 상태로 존재하는데 이들 +4가나 +6가로 변환시켜 좀 질산동도에서도 추출이 가능하도록 금속원소의 심화매도 조절 및 선택적 추출방법에 대해 연구하고 있다. 본 연구목적은 용매성으로 Am(III)→Am(IV)/Am(Ⅶ)의 산화 및 선택적 추출방법에 대해 개발하고 있는데 이 방법은 산화제 또는 전기화학적 방법으로 Am의 산화성태를 조절한 후 Am을 선택적으로 용매추출하는 방법이다.[2 9]. 대표적인 산화제인 HNO3는 속체제 AgNO3를 사용할 경우 묽은 질산공정에서 Am(III)→Am(Ⅶ) 효과적으로 산화시킬 수 있으며, 전기화학적 방법의 경우 속체제 AgNO3 및 작화제 P2W9O342-를 사용하여 전기화학적인 방법으로 Am(Ⅶ)을 얻을 수 있다. Am과 유토로우 원소를 상호분리 할 때 Am을 +3가 이상으로 산화시킨 다음 4가 및 5가의 액틴족 원소를 잘 추출하는 추출제로 Am을 용매추출 하면 Am 만을 선택적으로 추출하고 비추출성의 유토로우 원소는 속작용하여 넘어가게 되므로 Am과 REs를 상호 분리공정을 단순화시킬 수 있다. 지금까지 알려진 바에 의하면 HLLW에 함유되어 있는 성분의소량중 Am, Np, 및 Ce가 산화되어 추출제에 추출되며 회수된다. 그 이유를 살펴보면 Am(IV)/Am(III)의 표준 산화-환원 전위는 2.18V이고, Am(VI)/Am(III)의 표준 산화-환원 전위는 1.69V로서 Np(VI)/Np(V)의 표준 산화-환원 전위 1.13V 보다 적은 크기 때문 이다. 그러므로 Np 및 Am은 산화성태를 조절함으로써 유토로우 원소 및 핵물질성분들로부터 분리할 수 있다. 그러나 RE 중에서는 Ce(IV)/Ce(III)의 표준 산화-환원 전위가 1.70V이며 Ce(III)만이 Ce(IV)로 산화되므로 TEP 같은 추출제로 Np 및 Am과 동반 추출된다. 이와같이 동반 추출된 Ce는 필요한 경우에 후속 역추출공정에서 H2O2, HAN과 같은 환원제로 환원시키 분리할 수 있다. 따라서 본 연구팀은 방사성
폐액에 함유되어 있는 Am의 산화상태를 조절하는 용액과 산화된 Am을 효과적으로 추출할 수 있는 여러 가지 추출제에 대비 실험과 Am의 산화상태별 조절에 수반된 계열 문제점에 대비 실험하기 위해 Am 산화정 동반 산화되는 Ce에 대해 1차적으로 실험 목표로 선정하였다.

본 연구에서는 Am(III)의 산화 및 추출 연구에 대한 단계 연구로서 Ce(II)의 산화조건과 DEHPA, 2r-DEHPA 및 TBP 추출제에 의한 Ce(IV) 및 Eu(III)의 상호분리에 대한 실험결과를 논의하였다.

2. 실험

2.1. 시약

추출제 DEHPA, n-dodecane, FeSO₄(NH₄)₂SO₄·6H₂O, HNO₃는 AgNOR는 Merck 시약, Eu(NO₃)₃, Ce(NO₃)₃는 Aldrich 시약 그리고 Zr(SO₄)는 Scejawa 시약을 특별한 제조과정 없이 그대로 사용하였다. 그리고 (NH₄)₂SO₄는 수용성이 불안정하여 분해되므로 그 자체 사용 또는 용액을 사용할 경우에 실험할 때마다 새로 만들어 즉시 사용하였다.

2.2. 추출제 제조 및 전처리

1) 1M DEHPA/dodecane

1M에 해당하는 DEHPA를 부피 블라스케에 취한 후 dodecane으로 표준까지 채운다. 그리고 DEHPA는 시약을 전처리과정없이 그대로 실험에 사용한다.

2) 2r-1M DEHPA/dodecane (2r=19.18g/L)

1M의 DEHPA/dodecane 용액과 0.167M 2r의 1M H₂SO₄ 용액을 제조 한 다음, 이들 두 용액의 부피비가 1:1이 되도록 병렬 깔개기에게 취한 후 진탕기에서 진탕하여 2r가 유기상으로 추출되어 평형이 이루어질 때까지 추출한 다음 방치하여 유기상과 수용성을 각각 분리한다. 분리된 유기상은 0.5M의 질산 용액으로 2회 연속 세척한 다음, 상본리 여과지(watman 1PS)로 진탕 수분을 여과하여 제거한 후 이를 추출제(2r-DEHPA)로 사용하였다. 그리고 2r-DEHPA 내의 2r 혼합액을 추출한 1M의 황산용액과 0.5M의 질산 세척용액 내의 2r 농도를 분석한 결과로부터 계산한 결과 2r 농도는 19.18g/L였다. 2r-1M DEHPA/dodecane에 대한 구조분석으로 I.R. 및 Raman 스펙트럼을 측정하였다. 그리고 본 실험에서 사용하는 질산, DTPA 용액, 염추출제 및 용해제생제에 대한 2r-DEHPA의 안정성 시험은 황산배경에서 혼합한 2r-1M DEHPA/dodecane을 사용하여 추출제인 2r-DEHPA를 실제 실험과 동일한 조건에서 실험한 후 2r-DEHPA의 분해생성물인 2r 농도를 측정하여 학적 안정성을 시험한 바 있다[10].

3) 1M TBP/dodecane

1M에 해당하는 TBP를 부피 블라스케에 취한 후 dodecane으로 표준까지 채운다. 그리고 질산배경에서 사용하므로 실험조건과 동일한 농도의 질산용액과 (1r) 부피비로 병렬 깔개기에게 취한 후 혼들어서 전처리(pre-equilibrium) 한 후 유기상을 분리하여 실험에 사용하여 실험과정에서 TBP가 HNO₃를 추출하는 성질로 인해 질산농도 변화에 따라 영향을 제거하였다.

2.3. 기기 및 분석

산화실험은 물중량기(창신과학, 모델 C-WB)를 사용하고, 추출실험은 돈도 및 시간조건이 가능한 진탕기(Jeio tech., 모델: SI-300R)를 사용하였다. 용액의 pH는 Orion사의 pH meter(모델: 960)로 측정하였다. Ce(IV)의 분석은 Orion사의 자동분석기(모델: 960i)와 백금 redox 전극(orion model: 9770B1)을 사용하였다. 분석은 1N H₂SO₄ 용액 80ml에 Ce 분석 시료용액을 일정량 취한후 0.01M Fe의 1N H₂SO₄ 용
2.4. 실험

Ce(III), Eu(III)의 산화실험은 Ce(III)/Eu(III), (NH₄)₂S₂O₇와 AgNO₃, HNO₃ 용액을 실험조건에 따라 유효용기(vial)에 취한 후 운동조절이 가능한 물 중탕(water bath)에서 실험하였다. 그리고 Ce(III)/Eu(III)의 산화 및 추출실험은 (NH₄)₂S₂O₇와 AgNO₃, HNO₃ 용액 그리고 추출용매를 실험조건에 따라 유효용기(vial)에 취하여 건탕기를 사용하여 충분히 평형이 이루어질 때까지 실온에서 추출한 후 이를 방치하여 유기상과 수용성이 분리되도록 한다. 그리고 유기상과 수용 상의 일정량을 취하여 유효결합 플라즈마 원자발광 분광기(jobin yvon, model: JY 38 plus)로 분석하였다.

3. 결과 및 고찰

3.1. Ce(III)의 산화

Ce(III) → Ce(IV) 산화에 사용되는 산화제는 oxalate, Fe(II), Cr(III), Sn(II), Hg(I), (NH₄)₂S₂O₇ 그리고 U(IV) 등 여러가지 물질을 볼 수 있지만 그 중에서도 본 실험에서 사용한 (NH₄)₂S₂O₇는 Ce을 경질적으로 산화시킬 수 있는 충분히 높은 산화전위를 가지며, 유기용매와 반응순도가 상당히 높고, 대량사용이 용이할 성질을 가지고 있다. 그리고 S₂O₇²⁻는 양만대인 AgNO₃와 같이 사용하면 좋은 질산용액에서 Ce(III) 뿐만 아니라 Am(III)을 경질적으로 산화시킬 수 있는 효과적인 산화제로 알려져 있어 향후 연구 예정인 탄탄측정원소와 알리토록원소의 합성분리에 사용할 수 있어 산화제로 선정하였다[12].

3.1.1. 질산동도 영향

질산동도 1M~3M 범위에서 질산동도 변화에 대해 Ce(II) → Ce(IV)의 실험한 결과는 Fig. 1과 같다. 1M HNO₃ 0.1M (NH₄)₂S₂O₇ 0.1M AgNO₃ 일 때 Ce(III) → Ce(IV)의 정질적인 산화가 가능하였으나 HNO₃ 농도가 증가에 비례하여 Ce(IV) 산화제의 생성률이 감소하였다. 그리고 질산매질에서 Ce(III) 산화제는 두 성질로 Ce(IV) 산화제로 전환된 황을 나타내므로 Ce(III)의 산화반응이 진행되는 정도를 윤곽으로도 쉽게 예측할 수 있었다. 질산용액에서 산화제의 S₂O₇²⁻와 채택 AgNO₃에 의한 Am의 산화 픽타늄들에 대한 연구결과는 많이 발표되어 있다. 반면에 반응성테이블에 소형처리를 위한 균분리 방법에서 Ce에 대한 연구는 Am의 연구에 비하여 단면적이 경질적이 경질적인 연구결과가 발표되어 있다. 그러나 Am에 대해서도 산화 반응에 대한 연구가 많고 되었고 잘못되어 Am에 대해 저장된 산화반응 픽타늄들을 위해 경질적인 이론이 확립되어 있지 않은 실정이다. 따라서 현재까지 Am에 대해 저장된 산화반응 픽타늄들을 근거로 하여 Ce의 산화 픽타늄들을 유추하여 보면 Ce³⁺ 이온이 식 (1)과 (2)에 의해 생성된 SO₄²⁻와 OH⁻에 Ce⁴⁺ 이온으로 산화하는 픽타늄들[9]과 식 (3)에 의해 생성된 Ag²⁺에 의해 Ce⁴⁺ 이온으로 산화하는 픽타늄들[9]으로 정리할 수 있으며 Ce과의 산화 반응에 대해서는 향후 추가적인 고찰이 요구된다.

\[
\begin{align*}
S₂O₇²⁻ + H₂O & \rightarrow HSO₄⁻ + SO₄²⁻ + OH⁻ \quad (1) \\
Ag⁺ + S₂O₇²⁻ & \rightarrow Ag²⁺ + SO₄²⁻ + SO₄²⁻ \quad (2) \\
2Ag⁺ + S₂O₇²⁻ & \rightarrow 2Ag²⁺ + SO₄²⁻ \quad (3)
\end{align*}
\]

HNO₃ 용액의 증가함수로 수록된 Ce⁺⁺ 산화경이 감소하는 것은 Am의 경우[9]와 마찬가지로 다음과 반응과 같이 (NH₄)₂S₂O₇가 분해되어 생성되는 H₂O가 산화 생성된 Ce(IV)를 다시 Ce(III)로 환원시키기 때문
문으로 설명이 가능하다고 보지만, 한편으로 H₂O₂ 생성여부에 대한 Kamoshida의 반론도 제기된 바 있다.

\[
\begin{align*}
S_2O_8^{2-} + H^+ + H_2O &\rightarrow SO_3^- + HSO_4^- + H_2O \\
H_2O_2 + 2AmO_2^{2-} &\rightarrow 2AmO_2^- + 2H^+ + O_2 \uparrow
\end{align*}
\]

식 (6) ~ (10)의 반응식들은 용액의 산도에 따른 S₂O₈²⁻의 분해과정에 대한 추계로에 대한 가능성을 나타낸 것이다[4].

\[
\begin{align*}
H^+ + S_2O_8^{2-} &\rightleftharpoons HS_2O_8^- & (6) \\
H_2S_2O_8^- + H_2O &\rightarrow HSO_3^- + HSO_4^- + H^+ & (7) \\
OH^- + HSO_3^- &\rightarrow H_2O + SO_4^2- & (8) \\
HSO_3^- + SO_3^- + H_2O &\rightarrow 2HSO_4^- + O_2 + OH^- & (9) \\
OH^- + SO_3^- &\rightarrow HSO_3^- + O_2 & (10)
\end{align*}
\]

산성용액에서 S₂O₈²⁻는 식 (1)에 의한 일반반응과 식 (2)의 Ag⁺의 촉매반응과 식 (6)의 H⁺의 촉매반응에 의해서 분해된다. 식 (6)과 (7)를 보면 H⁺은 S₂O₈²⁻과 반응하여 HSO₄⁻을 생성하며 이들은 각각 Ce의 산화나 환원에 참여할 화학물을 생성하지 않는다. 산화 반응과 산화반응은 높은 질산농도에서 역제되는 것으로 보인다.

3.1.2. (NH₄)₂S₂O₈ 농도 영향

질산농도 1M, 온도 20℃와 60℃에서 (NH₄)₂S₂O₈ 농도를 0.05M ~ 0.4M까지 변화시켜 Ce(III)→Ce(IV)의 산화심층 결과는 Fig. 2와 같다. 실험결과 (NH₄)₂S₂O₈ 농도가 증가함에 따라서 Ce(IV) 생성물이 증가하였으며 온도가 높음수록 Ce(IV) 생성량도 증가하였다. 그러나 온도의 영향은 반응시간을 갑게 하면 Ce(IV) 생성물의 증가함으로 볼 때 반응속도를 빠르게 하는 효과가 크다고 판단된다. 그리고 동일한 질산농도에서는 (NH₄)₂S₂O₈ 농도가 증가함에 따라서 Ce(IV) 생성물이 증가하였으며 이를 HNO₃ 농도 변화에 대한 0.1M, 0.2M, 0.3M (NH₄)₂S₂O₈인 조건에서의 Ce(IV) 생성물을 도시하여 보면 각각의 반응물이 모두 증가하였다. 반응물의 변화학식은 오른쪽으로 전이(shift) 되는 현상을 보이고 있다. 따라서 이와같은 실험결과는 (NH₄)₂S₂O₈의 질산에 반응하여 분해되는 기존의 해석[4]으로 설명할 수 있다. 그리고 S₂O₈²⁻ 이온은 Ag⁺를 Ag₂O₄로 산화시키고 Ag₂O₄는 Ce(III)를 Ce(IV)로 산화시키는 역할을 한다[5]. Am의 경우에도 보다가 같이 (NH₄)₂S₂O₈ 농도를 증가시키면 높은 질산농도에서도 Am의 산화가 가능치만 (NH₄)₂S₂O₈ 농도가 증가함에 따라 두 가지 부작용이 지적되고 있다. 첫째는 Am 산화과정에서 (NH₄)₂S₂O₈는 분해되어 S₂O₈²⁻ 이온이 생성되며, 생성된 S₂O₈²⁻은 Am(Ⅵ)의 산화시키는 역할을 한다[6]. 둘째는 다량의 (NH₄)₂S₂O₈를 사용할 경우 폐액의 황산염농도가 증가된다. 이러한 문제점은 해결하기 위해서 칙화제로 K₃P₂W₁₀O₃₆ 등을 사용하여 (NH₄)₂S₂O₈ 농도를 감소시키는 방법이 제시되어 있다. 실제로 산화기초 및 전자전도 용액에 의한 탄산촉촉소의 작동능력에서 K₃P₂W₁₀O₃₆ 칙화제를 사용할 경우 Ce(IV)의 된을 형성하는 K₃P₂W₁₀O₃₆의 소모량을 줄이기 위하여 Ce(IV)를 우선 계한 후 K₃P₂W₁₀O₃₆을 사용하여 Am의 선택적 촉촉 및 분리정소가 개발되고 있어 [2,3,6], 합측 K₃P₂W₁₀O₃₆ 칙화제의 영향에 대해서도 고려해야 한다.

3.1.3. AgNO₃ 농도 영향

1M HNO₃, 0.1M (NH₄)₂S₂O₈ 75℃에서 Ce(III)→Ce(IV)의 산화체 미치는 AgNO₃ 농도 영향은 Fig. 3과 같다. AgNO₃ 농도가 10⁻¹M에서 0.01M AgNO₃이 끌 때까지 Ce(IV)의 생성량이 증가하였다가 그 이상 농도에서는 Ce(IV) 생성량이 오히려 감소하고 있다. 그리고 AgNO₃ 농도가 0.01M 이상에서는 AgNO₃ 용액이 산화되면서 Ag⁺에 의한 전한 결함으로 변색되었다. 그러나 온도가 높아지고 시간이 지나면
Ag⁺ 이온은 물에 의해 다시 환원되어 발색이 사라지는 현상을 나타내었다. 이 실험결과를 보면 AgNO₃가 신화되어 생성되는 Ag⁺은 반응속도가 매우 빠른 화학계에서 SO₄²⁻와 같이 반응속도가 느린 강한 화학계의 촉매[12]로 사용한 것과 같이 본 실험결과에서도 Ag 이온이 Ce(III) 산화에 중요한 역할을 하고 있음을 알 수 있다. AgNO₃ ≥ 0.01M에서 Ce(IV) 생성량이 감소하는 이유는 SO₄²⁻가 Ce(III) 산화반응에 관여되기 보다는 반응속도가 빠른 일련의 Ag⁺ 촉매반응에 의해 SO₄²⁻가 소모되기 때문으로 보고 있다[4].

3.1.4. 온도 영향

Fig. 4는 1M HNO₃, 0.1M (NH₄)₂SO₄, 0.01M AgNO₃에서 Ce(III)→Ce(IV)의 산화에 미치는 온도의 영향을 나타낸 것으로 온도가 20°C에서 60°C 영역에서는 온도가 증가함수록 동일한 시간동안에 생성되는 Ce(IV) 양이 증가하는 양상을 나타내고 있으며 그 이상온도에서는 약간 감소하고 있다. 6.2M HNO₃ 용액에서 Ce(III)-Ce(IV) 교환에 필요한 활성계어네지기는 11.7 ± 0.8 Kcal/mole 이라고 발표된 바 있다[12]. 본 실험에서 반응물의 농도 및 세밀한 촉매로 AgNO₃를 사용한 조건에서 온도의 영향을 보면 Ce(III)→Ce(IV)의 산화시기에 따라 반응속도는 반응을 일으키기로 충분한 에너지를 가지는 분자의 분율이 온도의 함수이므로 Ce(IV) 생성량이 증가한다고 볼 수 있다.

3.1.5. 반응속도 영향

Fig. 5는 2M HNO₃, 0.1M (NH₄)₂SO₄, 0.01M AgNO₃ 조건에서 20°C, 40°C, 70°C 일 때 Ce(III)→Ce(IV)의 산화가동에 미치는 온도의 영향을 나타낸 것으로 온도가 20°C에서 70°C 영역에서는 온도가 증가함수록 반응속도가 증가하고 있다. Fig. 6은 1M HNO₃, 0.01M AgNO₃, 20°C 조건에서, (NH₄)₂SO₄ 농도가 0.04M, 0.01M, 0.2M 일 때 Ce(III)→Ce(IV)의 산화가동에 미치는 (NH₄)₂SO₄ 농도에 대한 실험결과로 (NH₄)₂SO₄ 농도가 증가함수록 반응속도가 증가하고 있다. 그리고 0.1M (NH₄)₂SO₄, 0.01M AgNO₃, 20°C 조건에서 HNO₃ 농도가 1M, 2M, 3M 일 때 Ce(III)→Ce(IV)의 산화가동에 미치는 HNO₃ 농도의 영향에 대한 실험결과를 보면 질산농도가 증가함수록 반응속도가 감소하고 있다. 이와 같은 HNO₃, (NH₄)₂SO₄, AgNO₃ 반응속도에 미치는 영향에 대한 실험결과를 바탕으로 Ce(III)→Ce(IV)의 산화응용을 만든 후 반도 응용가동실험에 사용하였다. 그러나 산화된 Ce(IV)의 C(II)로 환원반응에 대한 Ce(IV)의 안정도에 대한 실험은 하지 않았다.

3.2. Ce(IV), Eu(III)의 추출

3.2.1. DEHPA에 의한 추출

Ce(III) 및 3가 흡호류영은 pH가 1~4일 때 DEHPA 추출제에 의해 99% 이상 정량적인 추출이 가능하지만, 질산농도가 1M 이상 증가하면 Ce(III) 및 3가 흡호류영의 추출율은 20% 미만으로 급격히 감소하게 된다[1]. 그러나 1M HNO₃에서 Ce(III)를 Ce(IV)로 산화시킨 다음 1M DEHPA로 추출하였을 때 2M~8M의 높은 질산농도에서도 Ce(IV)의 추출율은 98% 이상 Eu 추출율은 1% 미만이었다. 이와 같은 실험결과로부터 Ce와 Eu의 상호분리가 가능하다고 판단된다. Saha[14]에 의하면 DEHPA 추출제의 경우 질산농도가 낮을수록 추출이 잘 되는 Ce(III)보다는 높아도 Ce(IV) 추출에 있어서는 질산농도가 0.01M 이하에서 추출이 잘 되다가 약 1M 일 때 추출율이 최고가 되며, 1M~8M 영역에서는 질산농도에 비례하여 질산농도가 증가함수록 추출율이 증가한다는 실험결과를 발표한 바 있다. 지금까지 알려진 바에 의하면 질산농도가 5M 이상인 영역에서 정량적인 Ce(IV) 추출이 가능하며, 질산농도가 6.5M~8M 영역에서는 최대 추출율을 나타낸다[14~16]. 질산농도 1M 영역에서의 추출은 다음과 같은 이온교환 메커니즘에 의해 일어난다.

\[
\text{Ce}^{3+} + 4(HX) \Leftrightarrow \text{CeX}_4 \cdot (HX)_4 + 4H^+ \quad (HX = \text{DEHPA}) \quad (11)
\]

\[
\text{Ce}^{3+} + 3(HX)_2 \Leftrightarrow \text{CeX}_3(HX)_3 + 3H^+ \quad (12)
\]
질산농도가 증가함수록 Ce(IV) 추출율도 점점 증가되는데 질산농도가 높아지면 추출 폐가가 증가함은 다음과 같이 용해도 추출반응이 일어난다.

\[\text{Ce}^{4+} + 4\text{NO}_3^- + (HX)_2 \rightarrow \text{Ce(NO}_3)_4 \cdot 2\text{(HX)} \]

이와같은 실험결과를 근거로 효과적인 Ce(IV)추출 및 역추출 조건을 보면 Ce(IV)를 8M 질산반응액에서 추출하여 1M의 질산용액으로 역추출하면 효과적이다. 그러나 본 실험에서는 추출용액에 추출된 Ce(IV)에 30% H₂O₂ / 5 ~ 6M HNO₃으로 역추출한 결과 Ce(IV)→Ce(III) 상태로 전환되어 1회에 98% 이상 역추출되므로 정량적인 역추출이 가능하였을 뿐만 아니라 Ce(IV) 상태로 역추출하는 것보다 간편한 효과가 있었다. 그리고 고온위 방사성 실험에서는 Ce(III) 산화제가 방사선에 의해 분해되는 문제가 되기 보다는 사실을 고려하여 한다[12].

3.2.2 TEP에 의한 추출

2M 질산용액에서 Ce(III)를 Ce(IV)로 산화시킨 용액에 대하여 1M TEP 추출제로 추출한 결과 DEHPA 및 Zr-DEHPA 추출제의 추출율이 98% 이상이며 비하여 추출율이 63%로 낮았으며 Eu 추출율은 1% 미만이다. TBP 추출제로 질산반응액에서Ce(III) 및 3가 희토류원소를 추출하기 위해서는 보통 TBP 농도, 질산농도 및 염색제의 농도가 높음수록 추출이 잘 되며 또한 금속원소의 산화가 높음수록 추출율이 증가하는 일반적인 경향[17]과 마찬가지로 본 실험결과도 1M TBP, 1M ~ 2M 질산농도 조건에서는 Ce 추출율이 낮았으나 Ce(III)에 비하여 추출율이 상당히 높다는 것을 알 수 있었으며[17], 질산농도가 증가함에 따라서 Ce(IV)의 추출율도 증가하였으나 DEHPA 및 Zr-DEHPA 추출제에 비하여 Ce(IV)의 정량적인 추출을 위해서는 100% TBP를 사용하여 다단 추출방식에 대한 추가적인 실험이 필요하다고 판단되었으나 Am의 경우 TBP 추출제에 대한 연구가 많이 진행되고 있다. 그리고 발표된 TBP의 추출 메커니즘은 금속-TBP의 공유결합에 의한 추출반응이 일어난다[17 ~18],

\[\text{Ce}_{2}^{4+} + 4\text{NO}_3^- + 2\text{TEP}_{(a)} \rightarrow \text{Ce(NO}_3)_4 \cdot 2\text{TEP}_{(a)} \]
\[\text{Ce}_{2}^{4+} + 3\text{NO}_3^- + 3\text{TEP}_{(a)} \rightarrow \text{Ce(NO}_3)_3 \cdot 3\text{TEP}_{(a)} \]

질산용액에서 TEP는 금속이온 뿐만 아니라 다음과 같이 HNO₃도 추출한다. 따라서 TEP 추출제는 실험에 미치는 질산영향을 배제하기 위해서 실험조건과 동일한 질산용액과 선 평형(pre-equilibrium) 처리 과정이 요구된다.

\[\text{H}^+ + \text{NO}_3^- + \text{TEP} \rightarrow \text{HNO}_3 \cdot \text{TEP} \]

3.2.3 Zr-DEHPA에 의한 추출

Zr-DEHPA 추출제는 DEHPA 추출제와 추출특성을 유사하나 높은 질산농도에서도 3가의 탄단족원소, 영토목질원소를 추출하는 특성을 갖는다[10]. Ce(IV) 추출실험과 Zr-DEHPA는 DEHPA 추출제와 유사한 추출율 및 역추출율을 얻었으나 Eu에 대해서 추출율이 DEHPA 보다 높았다. 이때 Ce의 추출 반응식은 다음과 같다.

\[\text{Ce}^{4+} + 3\text{(HA)}_2 \rightarrow \text{Ce(HA)}_2 + 3\text{H}^+ \text{(HA} = \text{Zr-DEHPA}) \]
\[\text{CeNO}_3^{3+} + \text{H}_2\text{ZrA}_6 \rightarrow \text{Ce(NO}_3)_2\text{ZrA}_6 + 2\text{H}^+ \]

3.2.4. 역추출

H₂O₂ 농도를 5% ~ 30% 까지 변화시켰을 때 Ce의 역추출율은 H₂O₂ 농도에 비례하여 증가하였다. 그러나 H₂O₂가 20% ~ 30% 범위에서는 Ce의 역추출율 99% 이상, Eu는 1% 미만으로 빠르게하였다.
4. 결론

방사성 엑체폐기물에 함유되어 있는 Ce(III) → Ce(IV)의 산화조건과 용매추출법에 의한 선택적 추출 특성에 대하여 실험하였다. (1) 1M HNO₃, 1.5M (NH₄)₂SO₄, 0.01M AgNO₃ 임 때 Ce(III) → Ce(IV)의 결정적인 산화가 가능하였으나 HNO₃ 용도가 증가에 비례하여 Ce(VI)의 생성율도 감소하였다. (2) (NH₄)₂SO₄ 용도가 증가함수록 Ce(VI)의 수율은 증가하였으나 길산농도, 온도, AgNO₃ 농도 및 추출제 금속이온과의 경쟁반응, 폐액중 환산율 증가에 의한 영향을 고려할 때 본 실험에서는 0.1M 이 적절한 농도로 나타났다. (3) AgNO₃ 용도가 증가함수록 Ce(VI)의 수율은 증가하였으며 0.2M에서 최대값을 나타내었다. 1M HNO₃ 용도에서 0.1M (NH₄)₂SO₄, 0.01M AgNO₃ 임 때 Ce(VI)의 생성율은 98%였다. (4) 반응온도가 높음수록 반응속도는 배로이 온도의 증가하여 폐액에 비례하여 Ce(VI)의 생성속도도 증가하였으며, 길산농도, 온도, AgNO₃ 농도, (NH₄)₂SO₄ 농도에 의한 영향을 고려하여야 한다. (5) Ce의 추출율은 Ce(IV) 완성장에 비례하였으며 1M 길산농도에서 Ce(III)/Eu(III)를 산화시킨 후 1M TBP, 1M HDEHP, 1M Zr-DEHP으로 추출하였을 때 각각의 추출율에 대한 Ce의 추출율은 1M Zr-DEHP ≥ 1M HDEHP > 1M TBP의 순서로 나타났다. H₂O₂ 농도를 5% ~ 30% 까지 변화시켰을 때 Ce의 역 추출율은 H₂O₂ 농도에 비례하여 증가하였고, 그러나 H₂O₂가 20% ~ 30% 범위에서는 Ce의 역추출율이 거의 비슷하였다.

참고문헌

2. J. M ADNET, CEA-R-5615 (1992)