TiO₂가 UO₂와 U₃O₀의 혼합분말 성형체의 소결거동에 미치는 영향

Effect of TiO₂ Addition on Sintering behaviors of Mixed UO₂ and U₃O₈ Powder Compacts

송근우, 김건식, 강기원, 방제건, 김영민 한국원자력연구소 대전광역시 유성구 덕진동 150

초록

다량의 U₃Os 분말을 UO₂ 소결체 제조에 재사용하기 위한 소결방법을 연구하였다. U₃Os 분말을 10 - 100 wt%로 하여 UO₂ 분말과 혼합하고 여기에 TiO₂를 첨가하였다. 혼합분말을 성형하고 1680°c 에서 수소분위기에서 소결하였다. 첨가제를 넣지 않으면, UO₂ 소결체의 밀도는 U₃Os 양에 따라서 크게 감소하여 15 wt% U₃Os 이상에서는 소결체 spec보다 낮은 밀도를 갖게된다. 그러나 TiO₂를 0.1 wt% 이상 첨가하면 40 wt% U₃Os 까지만 감소하고 그 이상에서는 밀도감소가 없어서 100 wt% U₃Os 에서도 94 %TD 이상의 밀도를 얻는다. TiO₂는 소결중간 단계에서 치밀화 속도를 가속하는데, 이것은 Ti₃Os 가 UO₂에 고용되는 것과 관련이 있다고 생각된다. 0.1 wt% TiO₂를 첨 가하면 결정립 크기가 매우 성장하는데, 이것은 결정립계에 액상이 형성되기 때문으로 여겨진다. 따라서 TiO₂를 첨가하면 U₃Os 분말을 대량으로 UO₂ 소결체 제조에 재사용할 수 있다.

Abstract

The fabrication method of UO₂ pellets which can reuse a large amount of U₃O₈ powder has been investigated. The U₃O₈ powder made by oxidizing defective UO₂ pellets was mixed with UO₂ powder, and TiO₂ were then added. Powder mixtures having various compositions of U₃O₈ were pressed and sintered at 1680°C in hydrogen. Without TiO₂ addition, the UO₂ pellet density decreases very much with U₃O₈ composition and thus is lower than 94 % TD above 15 wt% U₃O₈. However, with the addition of more than 0.1 wt % TiO₂ the density decreases slightly with U₃O₈ composition and thus is above 94 % TD even at 100 wt % U₃O₈. The densifying ability of TiO₂ appears increasing with U₃O₈ composition. The addition of TiO₂ enhances the densification of a mixed UO₂ and U₃O₈ compact in an intermediate sintering stage since Ti₃O₅ is so dissolved in UO₂ as to accelerate a densification rate. The grain size is enormously increased by the addition of more than 0.1 wt % TiO₂ mainly because a liquid phase is formed on grain boundary during the sintering. Therefore the U₃O₈ powder made by the oxidation of defective UO₂ pellets can be reused massively in the fabrication of UO₂ pellets by sintering with an aid of TiO₂ 1. 서론

핵연료로서 널리 사용되고 있는 이산화 우라늄 (UO₂) 소결체는 UO₂ 분말을 압축성형한 후 소 결하여 제조하고 있다. 소결체를 제조하는 중에는 밀도, 직경 등에 대해서 기술시방서를 만족하지 못하는 불량 UO₂ 소결체가 만들어질 수 있다. 이 불량 소결체는 매우 비싼 농축 우라늄을 함유하 고 있기 때문에 이것들을 반드시 새로운 UO₂ 소결체 제조에 재활용해야 한다. 통상적인 재활용 방법은 불량 UO₂ 소결체를 산화해서 U₅O₈ 분말을 제조하고 이것을 UO₂ 분말과 혼합한다. UO₂ 와 U₅O₈ 분말의 혼합분말을 UO₂ 분말과 동일한 방법으로 압축성형 및 소결한다.

그러나 이 재활용 방법에서는 혼합분말의 소결성이 UO₂ 분말의 소결성보다 매우 떨어진다는 문 제점이 있다. 일반적으로 혼합분말에서 U₃O₈의 배합비는 15 wt% 까지 허용되는데, 왜냐하면 U₃O₈이 더 많이 혼합되면 소결체 밀도가 기술시방서보다 낮아지기 때문이다. 만약 아주 많은 양 의 불량 소결체가 예기치 않게 발생한다면 이것들은 재활용하기까지 많은 시간이 소용된다. 따라 서 U₃O₈의 조성이 더 높은 혼합분말로부터 UO₂ 소결체를 제조하는 것이 필요하다.

TiO₂가 UO₂ 성형체의 소결거동에 미치는 영향은 이미 연구되었고 [2,3,4], 특히 결정립 성장의 관점에서 많이 연구되었다. TiO₂가 UO₂에서 결정립 크기를 상당히 증가시킨다는 사실은 잘 알려 져 있다. Ainscough 등은 [2] TiO₂ 첨가에 의해서 UO₂ 성형체의 치밀화가 촉진된다고 발표하였 고, Radford와 Pope[4] 은 TiO₂ 첨가는 비교적 저온에서는 UO₂의 치밀화를 촉진하지만 최종 소 결체 밀도에는 거의 영향을 주지 않는다고 발표하였다. TiO₂이 UO₂ 와 U₃O₈의 혼합 성형체의 소 결거동에 미치는 영향은 아직까지 연구되지 않고 있다.

본 연구의 목적은 많은 양의 U₃O₈ 분말을 재사용해서 UO₂ 소결체를 제조하는 데 있다. 본 논 문에서는 TiO₂ 이 UO₂ 와 U₃O₈의 혼합 성형체의 치밀화와 결정립 성장에 미치는 영향을 서술하 고자 한다. 그리고 TiO₂ 첨가에 의해서 형성되는 미세조직에 대해서 서술하고자 한다.

2, 실험방법

본 실험에서는 AUC 공정으로 제조한 UO₂ 분말을 사용하였다[5], UO₂ 분말의 입자크기는 17 µm 이고 비표면적은 5 m²/g 이다. 불량 UO₂ 소결체를 공기 중에서 400°C 로 3 시간동안 산화해서 U₃O₈ 분말을 얻었다. U₃O₈ 상은 UO₂ 보다 격자부피가 약 30 % 정도 크기 때문에 UO₂ 소결체는 산화 중에 응력에 의해서 자발적으로 분말로 변한다. UO₂ 와 U₃O₈ 분말의 입자크기를 레이저 산 란 방법으로 측정하였고, 입자의 형상을 주사전자현미경으로 관찰하였다.

UO₂ 분말을 U₃O₈ 분말과 회전혼합기에서 혼합하였고, 이때 TiO₂ 분말도 함께 혼합하였다. 혼 합분말에서 U₃O₈의 조성은 10, 20, 30, 40, 60, 80, and 100 wt % 이고, TiO₂ 농도는 각 조성에서 0.05, 0.1, 그리고 0.2 wt % 이다. 혼합분말을 3 ton/cm² 압력으로 압축성형하여 성형체를 제조하 였고 성형체의 밀도는 5.75 g/cm³ 이다. 성형체를 수소기체 분위기에서 700℃까지 가영하고 1 시 간동안 유지하고, 다시 1680℃까지 가열하고 4 시간 유지하고 노냉하였다. 수소기체의 이슬점은 -30℃이고 따라서 수증기 대 수소 기체의 비는 5x10⁻⁴ 이다. Dilatometer를 사용해서 60 wt % UO₂ 와 40 wt % U₃O₈ 의 혼합 성형체의 치밀화 속도를 측정했다. 소결체 밀도를 침적법으로 측정하였고, 소결체를 길이방향으로 자라서 연마하였다. 결정립계를 관찰하기 위해서 1250°C에서 1 시간동안 CO₂ 기체 분위기로 열에칭 한 후, 결정립 크기를 직선교 차법으로 구했다. 제2차상을 EPMA를 사용해서 정량적으로 분석하였다.

3, 결과 및 고찰

UO₂ 와 U₈O₈ 분말의 입도분포를 그림 1에 나타낸다. 두 분말은 모두 단일 모우드 분포를 보이 며, UO₂ 분말의 모우드는 17 µm 이고 U₈O₈ 분말의 모우드는 8 µm 이다. U₈O₈ 분말의 입자크기는 산화온도에 영향을 받는 것으로 알려져 있다[6], 산화온도가 상승함에 따라서, 산화에서 비롯하는 응력이 완화되고 따라서 균열이 감소하고 입자크기는 증가한다. 더욱이 산화온도가 약 900℃를 넘 으면 균열없는 U₈O₈이 형성된다. 따라서 미세한 U₈O₈ 분말을 얻기 위해서는 UO₂ 소결체의 산화 온도가 350℃ - 500℃ 범위에 있어야 한다.

UO₂ 와 U₃O₈ 분말의 형상을 그림 2(a)와 2(b)에 각각 나타낸다. UO₂ 입자는 둥근 형상이고 매 끈한 표면을 가지고 있다. 따라서 UO₂ 분말은 유동성이 좋고 다른 분말과 잘 섞인다. 그러나 U₃O₈ 입자는 각진 형상이고 산화 중에 형성된 많은 균열을 지니고 있다. 따라서 U₃O₈ 분말은 유 동성이 좋지 않고 다른 분말과 잘 섞이지 않는다. 한편, U₃O₈ 분말의 비표면적은 0.5 m²/g 이고 UO₂ 분말의 비표면적은 0.5 m²/g 이다. 따라서 U₃O₈ 분말의 소결성은 UO₂ 분말보다 매우 떨어진 다고 할 수 있다.

성형체를 구성하는 U₃O₈은 소결후 UO₂ 로 환원된다. U₃O₈의 환원반응 속도론에 대한 연구에 따르면 [8], U₃O₈ 은 수소기체 분위기에서 500℃ - 600℃ 온도범위에서 1 시간 안에 UO₂ 로 환원 된다. UO₂ 와 U₃O₈ 혼합 성형체의 치밀화가 약 800℃에서 시작되므로 (그림 5 참조), 성형체 안의 U₃O₈은 수소 소결 중 치밀화가 일어나기 전에 UO₂ 로 환원된다고 생각하는 것이 타당하다. 따라 서 치밀화 관점에서 보면, UO₂ 와 U₃O₈ 혼합 성형체는 소결성이 나쁜 UO₂ 성형체로 간주할 수 있다.

UO₂ 소결체 밀도와 TiO₂ 농도 사이의 관계를 그림 3에 나타낸다. UO₂ 성형체에서는 TiO₂ 농 도가 0.05 wt% 이면 소결밀도가 거의 영향을 받지 않고, TiO₂가 0.1 wt% 이면 밀도가 크게 증가 한다. 이후 농도가 더 높아져도 밀도는 거의 일정하게 유지한다. 이러한 밀도와 TiO₂, 농도 사이의 관계는 U₃O₈ 조성을 갖는 다른 성형체에서도 밀도만 조금 감소한 상태로 관찰된다. 그림 3으로부 터 UO₂ 와 U₃O₈ 혼합 성형체의 치밀화를 촉진하기 위해서는 0.1 wt% 이상의 TiO₂이 필요하다 는 것을 알 수 있다.

UO2 소결체 밀도를 U3O8 조성의 함수로 그림 4에 보인다. TiO2이 없으면, 밀도는 U3O8 조성에 따라서 직선적으로 감소하며, 그 감소율은 10 wt% U3O8 당 약 2 %TD 이다. 한다. 이러한 밀도 감소는 U3O8 분말의 소결성이 UO2 분말보다 작기 때문으로 여겨진다. 0.05 wt% TiO2을 첨가하 면, 밀도 감소율은 TiO2가 첨가되지 않았을 경우와 유사하다. 0.1 wt % 및 0.2 wt % TiO2를 첨 가하면, 밀도는 U3O8 조성에 따라서 약간 감소한다. 하지만 40 wt% U3O8 이상에서는 밀도가 더 이상 감소하지 않는다. 따라서 100 wt% U3O8 조성에서도 밀도가 94 % TD 이상이다. 소결체 시 방서를 따르면, 밀도가 93.5 %TD - 96.5 %TD 범위에 있어야만 한다[1]. 따라서 0.1 wt % 이상 의 TiO2를 첨가하면 어느 U3O8 조성에서도 적합한 밀도를 갖는 소결체를 제조할 수 있다. 60 wt % UO₂ 와 40 wt % U₃O₈ 로 구성된 성형체의 치밀화 (수축,△L/L₀)를 온도위 함수로 그 림 5(a)에 나타낸다. 성형체는 TiO₂ 첨가 여부에 관계없이 약 800℃에서 치밀화를 시작하고, 약 1200℃ 까지는 유사한 치밀화 거동을 보인다. 그렇지만 1200℃ 이상에서는 TiO₂ 첨가 성형체가 더욱 많이 치밀화 한다. 두 성형체 사이의 치밀화 차이는 1350℃ 까지 증가하고 그 이상의 온도에 서도 그 차이가 거의 유지된다. 이러한 결과로부터 TiO₂ 는 UO₂ 와 U₃O₈의 혼합 성형체의 치밀 화를 주로 소결중간 단계에서 촉진한다는 것을 유추할 수 있다.

치밀화 속도 (수축속도)를 온도의 함수로 그림 5(b)에 보인다. 두 성형체의 치밀화 속도는 115 0°C까지 거의 유사하게 나타나지만 그 이상의 온도에서는 크게 차이가 난다. TiO₂ 첨가 성형체는 1150°C-1300°C 온도범위에서 매우 큰 치밀화 속도를 보인다. 따라서 이 온도범위에서 TiO₂ 는 치 밀화에 작용을 한다고 생각된다.

Titanium 산화물과 수소기체의 산소포텐샬을 HSC software [9]를 사용해서 계산했고 그 결과 를 그림 6에 나타낸다. 수소기체 분위기에서 안정한 titanium 산화물은 온도에 의해서 결정된다. 온도 900℃ 이하에서는 TiO₂ 가 안정하고, 900℃ - 1300℃ 온도범위에서는 Ti₃O₅, 약 1300℃ 이 상에서는 Ti₂O₃ 가 안정하다. UO₂ 와 U₃O₈ 혼합 성형체의 치밀화 속도가 1150℃ - 1300℃ 온도 범위에서 TiO₂ 에 의해서 가속되므로, 영향을 미치는 titanium 산화물은 주로 Ti₃O₅라고 여겨진다. 이 Ti₃O₅ 가 UO₂ 에 고용하면서 치밀화를 촉진하는 것으로 생각된다.

0.1 wt% TiO2를 첨가한 여러 U3Os 조성을 갖는 성형체로부터 제조한 UO2 소결체의 미세조직 을 그림 7(a), 7(b), 7(c) 및 7(d) 에 보인다. 기공의 수가 U3Os 조성에 따라서 증가하는 것을 쉽게 볼 수 있다. 그런데 기공 수의 증가는 60 wt% U3Os 범위 안에서 현저하고 그 이상에서는 별로 증가하지 않는다.

0.1 wt% TiO₂ 첨가된 UO₂ 소결체에서 형성된 이차상을 그림 8(a) 및 8(b)에 나타낸다. 그림 8(a)에서 매우 작은 이면각을 갖는 이차상이 결정립계에 석출한 것을 볼 수 있고, 따라서 이차상 은 소결 중에 액상으로 존재했던 것으로 추정 할 수 있다. 액상의 형성은 Ainscough 등[2] 에 의 해서 이미 확인되었다. 이차상의 titanium 농도는 주위의 기지조직보다 매우 높았다 (그림 8(b) 참 조), Titanium, 우라늄, 그리고 산소에 대한 정량분석 결과를 표 1에 나타낸다. 기지조직에서 titanium의 농도는 0.134 wt% 인데 이 값은 0.125 wt% TiO₂ 에 해당한다. 고용된 titanium은 90 0℃ - 1300℃ 온도범위에서는 Ti₃O₅에서 비롯하고, 1300℃ 이상에서는 Ti₂O₃로부터 비롯했다고 생 각된다.

Elements	기지조직	이차상
	(atomic %)	(atomic %)
U	31,445	21,830
Ti	0,134	9,837
0	68,422	68,331

표 1, 0,1 wt % TiO2 첨가 UO2 소결체에서 기지조직과 이차상의 성분분석

UO₂ 소결체의 결정립 크기와 U₃O₈ 조성 사이의 관계를 그림 9에 보인다. 이 관계는 U₃O₈ 조성 에 따라서 서로 다른 거동을 보인다. 40 wt% U₃O₈ 이하에서는 결정립 크기가 U₃O₈ 조성에 따라 서 현저하게 감소하지만, 그 이상에서는 결정립 크기는 매우 작게 감소한다. 이러한 관계는 각각 의 U₃O₈ 조성 범위에서 기공수의 변화와 연관해서 이해할 수 있다. 그림 7에서 U₃O₈ 조성이 낮은 범위에서는 기공수가 U₃O₈ 조성에 따라서 현저하게 증가하지만, U₃O₈ 조성이 높은 범위에서는 기 공수가 매우 적게 증가한다. UO₂ 소결체에서 결정립 성장은 기공에 의해서 제한을 받는다고 알려 져 있다 [10,11].

4. 결론

TiO₂을 UO₂와 U₃O₈의 혼합분말에 첨가한 후, 혼합분말을 압축성형하고 수소 분위기에서 소결 하였다. TiO₂을 첨가하지 않으면, UO₂ 소결체 밀도는 U₃O₈ 조성에 따라서 크게 감소하여 15 wt% U₃O₈ 이상에서는 밀도가 94 %TD 이하가 된다. 그렇지만 0.1 wt % 이상 농도의 TiO₂를 첨가하 면, 40 wt% U₃O₈ 조성 범위에서는 밀도가 U₃O₈ 조성에 따라서 작게 감소하고 그 이상의 U₃O₈ 조 성에서는 더 이상 밀도가 감소하지 않는다. UO₂와 U₃O₈ 혼합 성형체는 TiO₂ 첨가에 의해서 소결 중간 단계에서 치밀화가 촉진되는데, 이것은 Ti₃O₅ 가 UO₂에 고용되면서 치밀화 속도를 가속하기 때문으로 여겨진다. 결정립 크기는 TiO₂ 첨가에 의해서 크게 성장한다. 결론적으로, TiO₂ 첨가에 의해서 불량 UO₂ 소결체를 산화해서 얻는 U₃O₈ 분말을 다량으로 UO₂ 소결체 제조에 재사용할 수 있는 소결방법을 개발하였다.

감사의 글 본 연구는 과학기술부의 원자력연구개발 중장기 계획사업의 일환으로 수행되었음.

 H. Assmann and H. Bairiot, "Process and Product Control of Oxide Powder and Pellets for Reactor Fuel Application," in Guide book on Quality Control of Water Reactor Fuel, Tech. Report Series No. 221, IAEA, Vienna, (1983).

[2] J.B. Ainscough, F. Rigby and S.C. Osborn, "The effect of titania on grain growth and densification on sintered UO₂," J. Nucl. Mater., 52(1974)191.

[3] I. Amato, R.L. Colombo, and A.P. Balzali, "Grain growth in pure and titania-doped uranium dioxide," J. Nucl. Mater., 18(1966)253.

[4] K.C. Radford and J.M. Pope, "UO₂ fuel pellet microstructure modification through impurity additions," J. Nucl. Mater., 116(1983)305.

[5] E. Brandau and W. Doerr, "Characteristics of UO₂ Powder and Pellets for LWR Fuel," Trans. ANS, 31, 148 (1979).

[6] M. Iwasaki et al., "Oxidation of UO₂ pellets in air," J. Nucl. Sci. & Tech. 5 (1968) 48.

[7] K.W. Song and M.S. Yang, "Formation of columnar grain growth on the oxidation of UO₂ pellets in air at 900°C," J. Nucl. Mater., 209 (1994)270.

[8] A.H. Le Page and A.G. Fane, "The kinetics of hydrogen reduction of UO₃ and U₃O₈ derived from ammonium diuranate," J. Inorg. Nucl. Chem., 36(1974)87.

[9] HSC Chemistry for Windows, Outokump research, (1994).

[10] F.A. Nichols, "Theory of grain growth in porous compacts," J. Appl. Phys., 37, 4599 (1966).

[11] K.W. Song et al., "Microstructure Development during the sintering of Nb₂O₅-doped UO₂ pellets under H₂ and CO₂ atmosphere," J. Korean Nucl. Soc. 26, 484 (1994).

Fig. 1. Particle size distribution.

Fig.2. Micrographs showing morphology of (a) UO_2 and (b) U_3O_8

Fig. 3. UO $_2$ pellet density as a function of TiO $_2$ content under various U $_3$ O $_8$ compositions.

Fig. 4. UO $_2$ pellet density as a function of U $_3O_8$ composition under various TiO $_2$ additions.

Fig. 5. Densification and densification rates of (60 % UO $_2$ + 40 % U $_3O_8) compacts.$

Fig. 6. Oxygen potentials of titanium oxides and hydrogen gas with moisture as a function of temperature.

Fig. 7. Microstructure of 0.1 wt\% TiO_2 - doped UO₂ pellets made from various compacts. (a) UO₂ (b) 80 wt% UO₂+20wt% U₃O₈ (c) 40 wt% UO₂+60wt% U₃O₈ (d) U₃O₈

Fig. 8. A second phase precipitated on grain boundary. Titanium profile is obtained along the straight line.

Fig. 9. Grain size of UO_2 pellets as a function of U_3O_8 composition under TiO₂ additions.