

,99

## Abstract

Long-term corrosion tests were performed for three Zircaloy-4 alloys and three advanced Zr-alloy nuclear fuel cladding tuebs at temperature range of 360 to 415°C under water, steam and LiOH environments. After testing at 360°C/Water conditions, ZRX exhibited inferior corrosion resistance to other cladding tubes, which showed similar weight gain and corrosion rate. ZRC cladding tubes with higher cumulative annealing parameter showed lowest corrosion weight gains under steam test conditions. However, ZRC cladding tubes exhibited highest corrosion weight gain after 150 days at 360°C/70 ppm Li condition. Under LiOH environments at 360°C, ZRZ cladding tubes showed lowest corrosion weight gains.

,

1.

(uniform corrosion)

1).

|                     |     |                         |                        |          | ,      | t <sup>1/3</sup> |        | ,   |
|---------------------|-----|-------------------------|------------------------|----------|--------|------------------|--------|-----|
| 2~3µm               |     |                         | 가                      |          |        |                  |        | . 가 |
|                     |     | 5µm                     |                        | 2        | 가      |                  | 가 가    |     |
| ,                   |     | heat flux,              |                        |          |        |                  | 가      |     |
|                     |     | 가                       |                        |          |        | autoclave        |        |     |
| ASTM G              | 2   | 360° C                  |                        | 400      | °C     |                  |        |     |
|                     | PWR |                         |                        |          |        |                  |        |     |
| Sabol <sup>2)</sup> | ZRZ | 3                       | 360° C                 |          |        |                  | 가      |     |
|                     | •   | ,                       | . Peters <sup>3)</sup> | 360° C   |        |                  |        |     |
|                     |     |                         |                        | . 400° C | 1      |                  |        |     |
|                     |     | , Schemel <sup>4)</sup> | 400°C                  | 150~     | -200   |                  |        |     |
|                     |     | . , 150~200             |                        |          |        |                  | 가      |     |
|                     |     |                         |                        |          |        | 400° C           |        | ,   |
| Zircaloy-4          |     | フト 400                  | РС                     |          | 500° C |                  |        |     |
|                     |     | . Rudl                  | ling <sup>5)</sup>     | 410° C   | 430° C |                  | 430° C |     |
|                     |     |                         | , 410° C               |          |        |                  |        |     |
|                     |     |                         |                        |          |        |                  |        |     |

LiOH

,

2.

|                            | Low-Sn Zircaloy-4                |                              | ZRX,                 |  |  |
|----------------------------|----------------------------------|------------------------------|----------------------|--|--|
| ZRA, ZRC 3                 | ASTM B353                        | ZRZ (Zr-1.0Sn-0.1Fe-1.0I     | Nb), ZRB (Zr-1.33Sn- |  |  |
| 0.28Fe-0.15Cr), ZRD (Zirca | loy-4 + Zr-0.8Sn)                |                              |                      |  |  |
|                            | ASTM G2 (Practice for            | Aqueous Corrosion Testing of | Samples of Zirconium |  |  |
| and Zirconium Alloys)      |                                  |                              |                      |  |  |
|                            | Autoclave Engineering            | Type 304L stainless steel    | 1 liter              |  |  |
| static autoclave           | 360° C, 400° C, 415              | °C                           |                      |  |  |
| · ,                        | LiOH                             |                              | 360° C               |  |  |
| 0.01 molar LiOH (~ 70ppm   | Li) 0.03 molar LiOH (~210ppm Li) |                              |                      |  |  |
|                            |                                  | 1500 +/-100psi               | , LiOH               |  |  |
| 2700 +/-200psi             |                                  |                              |                      |  |  |

•

.

3.

가 360° C, 400° C 415° C 가 Figure 1~Figure 3 Table 1 Figure 1 400° C 174 30 (transition) 가 2 cyclic Figure 2 415°C 85 20 415° C 400° C . 가 가 , , 400° C 415° C . 400° C 415° C 가 ZRC 가 . ZRX 가 가 , ZRZ ELS , 가 ZRD , , ZRD ZRX 가 Figure 3 360° C 330 ZRX 가 , 60~90 1 . 400° C 2 3 ZRZ ZRX Sabol , 360° C . cyclic , 360°C 가 . ZRX, ZRC ZRA Zircaloy-4 , 1.45% Sn Sn . ZRB Low-Sn Zircaloy-4 ZRA Fe 가 Cr ASTM Fe . 가 Cr 가 ZRB . CAP (cumulative annealing ZRA parameter) 가, ZRB Fe 가 CAP , ZRX ZRC . , . Garzarolli<sup>6)</sup> ZRA CAP (Q/R=40,000 K)가 가  $CAP \geq 3x10^{-18}$ , PWR

.

3.1

. Thorvaldsson<sup>7)</sup>  $2x10^{18} \le CAP \le 5x10^{17}$ 400°C CAP 가 Zircaloy-4 가 (~10<sup>-14</sup>, Q/R=63,000 K) 가 , . Gros<sup>8)</sup> Zircaloy-4 가 Zircaloy Fe , SOCAP (second order cumulative . Van Swam <sup>9)</sup> annealing parameter) CAP SOCAP 가 , SOCAP ~  $2x10^{-21}m^3$ , SOCAP 가 . CAP 가 ZRC CAP ZRA , , 가 Zr-Nb β-. ZRZ Sn Nb Fe Nb 2 β-quenching , Zircaloy-4 Comstock<sup>10)</sup> Sn , CAP 가 가 Zircaloy-4 가 ZRZ . Comstock ZRZ 가 80nm •

## **3.2 LiOH**

|          | 1      |           |          |                      |    | рН     |                      |     |                 |
|----------|--------|-----------|----------|----------------------|----|--------|----------------------|-----|-----------------|
| 가        |        | , Li      | 가        |                      |    |        | 가                    |     | 360° C          |
| LiOH     | 가      | 70ppm     | 210ppr   | n Li                 |    |        |                      |     |                 |
| Figure 4 | 360° C | 0.01M LiO | H (70ppn | '0ppm Li) 150 360° C |    |        | 360° C               |     |                 |
|          |        | 가         |          |                      |    | . LiOH |                      | ZRZ | ZRC             |
|          |        |           |          |                      |    |        |                      |     |                 |
|          | 400° C | 415° C    |          | 가                    |    |        |                      | ZRZ | LiOH            |
|          | 가      |           |          |                      |    | cyclic |                      |     |                 |
|          |        |           |          | Z                    | RC |        | 70ppm Li             |     |                 |
|          |        |           | ZRX Z    | ZRC                  |    |        |                      | 30  | 가               |
|          |        |           |          | 가가                   |    |        | , Pati <sup>11</sup> | )   | 360° C/70ppm Li |
|          |        | Sabol     | l        |                      |    | Zir    | caloy-4              |     |                 |
|          | ZRC    | Nb        |          |                      |    |        |                      | フ   | ŀ               |
| LiOH     | ł      |           |          |                      |    |        |                      |     |                 |
| ,        |        | ZRC       | LiOH     |                      |    |        | ZRX                  |     |                 |

가 가 . ZRA, ZRB ZRD ZRX 가 , ZRA 100 ZRB 가 Figure 5 360° C 0.03M LiOH 50 , 20-30 가 . 210ppm Li 가 가 ZRZ , ZRB 가 가 . LiOH , 가 70ppm Li 2~7 가 가 210ppm Li 가 가가

## 4.

Zircaloy-4

가

5.

1) Garzarolli, F., Zirconium in the Nuclear Industry: Eleventh, ASTM STP 1295, pp. 12-32

2) Sabol, G.P., Zirconium in the Nuclear Industry: Tenth, ASTM STP 1245, pp. 724-744

3) Peters, H.R., Zirconium in the Nuclear Industry: Sixth, ASTM STP 824, pp. 507-518

4) Schemel, J.H., Zirconium in the Nuclear Industry: Eighth, ASTM STP 1023, pp. 141-152

5) Rudling, P., Zirconium in the Nuclear Industry: Eighth, ASTM STP 1023, pp. 213-226

6) Garzarolli, G., Zirconium in the Nuclear Industry: Eighth, ASTM STP 1023, pp. 202-212

7) Thorvaldsson, T., Zirconium in the Nuclear Industry: Eighth, ASTM STP 1023, pp. 128-140

8) Gros, J.P., Journal of Nuclear Materials, Vol. 172, 1990, pp. 85-96

9) Van Swam, L.F.P., Zirconium in the Nuclear Industry: Ninth, ASTM STP 1132, pp. 758-781

10) Comstock, R.J., Zirconium in the Nuclear Industry: Eleventh, ASTM STP 1295, pp. 710-725

11) Pati, S.R., ANS International Topical Meeting on LWR Fuel Performance, 1997, PP. 413-420





0.03M LiOH Water Solution at 360°C





Table 1. Post-transition corrosion rate after first transition

|               | ZRA   | ZRB   | ZRC   | ZRD   | ZRZ   | ZRX   |
|---------------|-------|-------|-------|-------|-------|-------|
| 360°C         | 0.324 | 0.305 | 0.322 | 0.295 | 0.317 | 0.408 |
| 400°C         | 0.389 | 0.332 | 0.312 | 0.437 | 1.017 | 0.475 |
| 415°C         | 0.534 | 0.521 | 0.573 | 0.743 | 1.511 | 0.677 |
| 0.01M<br>LiOH | 1.538 | 1.451 | 2.503 | 0.644 | 0.525 | 2.136 |
| 0.03M<br>LiOH | 64.38 | 55.26 | 65.66 | 60.67 | 43.82 | 63.64 |