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Abstract

  Based on the Very High Speed Integrated Circuit (VHSIC) Hardware Description

Language (VHDL), in this work, a simulation model for fault injection is developed to

estimate the dependability of the digital system in operational phase. We investigated the

software masking effect on hardware faults through the single bit-flip and stuck-at-x fault

injection into the internal registers of the processor and memory cells. The fault location

reaches all registers and memory cells. Fault distribution over locations is randomly

chosen based on a uniform probability distribution. Using this model, we have predicted

the reliability and masking effect of an application software in a digital system-Interposing

Logic System (ILS) in a nuclear power plant. We have considered four the software

operational profiles. From the results it was found that the software masking effect on

hardware faults should be properly considered for predicting the system dependability

accurately in operation phase. It is because the masking effect was formed to have

different values according to the operational profile.

1. Introduction

Computers today form integral parts of large systems where processing and control are

the primary demands. They can also be the mainstay of systems, such as flight control

systems and nuclear protection systems, which are required to be ultra-reliable. Designing

the reliable system and predicting the system reliability accurately are, therefore, the most

important issues that the computer designers and developers face.



The dependability estimation of the digital systems by fault injection has become key

issues and has drawn the attention of many researchers because the complexity of digital

system including fault tolerant mechanisms make analytical estimation of system very

difficult. Fault injection is an important technique for the evaluation of design metrics

such as reliability, safety, and fault coverage. Fault injection involves inserting faults into a

system and monitoring the system to determine its behavior in response to the fault.

Several approaches for fault injection have been made and fall into three categories: fault

injection at the physical level, software implemented fault injection and simulation-based

fault injection. Injecting fault at the physical level has been accomplished by inducing soft

errors with heavy-ion radiation to several processors,1 inducing electro-magnetic

interference to the hardware and corrupting the values of an IC pins during several clock

cycles in order to ensure that fault would manifest itself as an error for at least one cycle.2

One of software implemented fault injection techniques injects transient faults by

corrupting the process’s memory image and by inserting software trap instructions.3 The

simulation-based approaches are done at a gate-level4,5 where signal values in the

simulation are stuck at logic ‘1’ or ‘0’ or at a device-level6 where current or voltage values

are fixed.

Most of these researches however have focused on fault coverage and error latency of

fault-tolerant mechanisms in computing systems as dependability measures. At recent

years, it was reported that the hardware transient faults could be masked by only software

without hardware error masking mechanisms. That is, a substantial number of faults do not

affect the program results for several reasons: faults whose errors are neutralized by the

next instructions, faults affecting the execution of instructions that do not contribute to the

benchmark results, and faults whose errors are tolerated by the semantic of the benchmark

under execution. This effect should be considered properly because even a small change of

system fault coverage value can affect the system dependability.  7

In this work, VHDL-based simulation model for fault injection is developed to estimate

the reliability of the digital system in operational phase considering the software masking

effect on hardware faults. The faults occurred in system must escape not only the fault

tolerance mechanisms but also software masking of hardware faults to cause the failure of

the system. Therefore, for estimating the dependability of digital system accurately in

operational phase, operational input profile of software is considered because the software

execution by different operational profile can mask the different type of faults.

We investigated the single bit-flip and stuck-at-x fault in the internal registers of the

processor and in memory cells. The fault location covers all registers and memory cells.

Fault distribution over locations is randomly chosen based on an uniform probability



distribution. This model can estimate the reliability of the system more accurately in

operational phase.

Using this model, we predict the reliability and the software coverage function of the

application software in a digital system, Interposing Logic System (ILS)8 in a nuclear

power plant, whose diagram is shown in Figure 1. The system is a complete, self-

contained one board computer system consisting of 8 bit, n-channel 8085 microprocessor,

8155 multipurpose peripheral chip, random access memory (RAM), read only memory

(ROM), programmable timer, I/O ports, bus control logic, and memory expansion buffers.

Figure 1. Block diagram of a processor module

2. Model

2.1 Configuration of VHDL Simulation Model

As shown in Figure 2, a module (RANDOM FAULT LOCATION AND TIME GENERATOR;

RFLATG) determines the location in registers of microprocessor and memory cells into

which fault is injected. This module is coded by C language and produces the text file

which contains the fault location and time. The fault injector module reads the data from

the RFLATG module and determines the fault type (transient or permanent) of the

corrupted location in components. Then, it injects the fault into the selected registers and

memory cells. The fault injection technique in this module uses the bus resolution function

provided by VHDL language. The FAULT SELECTION LOGIC determines the component

into which the fault is injected. The software embedded in ROM reads the input data from

the random access memory (RAM) and store the results into the RAM. Therefore, the
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operational profile of the software is determined by the contents in the region of RAM

from which microprocessor fetch the data to execute the software instructions. The

PROFILER module changes the values in the input data region of RAM memory to simulate

the system operation in operational phase. All modules are modeled at behavioral level

with Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

(VHDL).

Figure 2. Block diagram of VHDL simulation model

2.2 Fault Injection Methodology

For injecting the stuck-at-x fault into the register cells of microprocessor and memory

cells, a bus resolution function provided by VHDL language is used to resolve the value of

the faulty signal with the normal signal of system. A resolution function is a function that

defines how the values of multiple sources of a given signal are to be resolved into a single

value for that signal.9 Therefore, for the stuck-at-one fault injection, the bit value ‘1’ from

the fault injector module is wired-or with the component in which the value should be

corrupted. For the stuck-at-zero fault injection, the bit value ‘0’ from the fault injector

module is wired-and with the component. The fault injection technique using the

resolution function was applied by DeLong.10 For the bit-flip fault, we followed the

methodology proposed by Ward.11 Each VHDL model, which describes normal behavior

of components, contains sub-process associated with the faulty behavior when the bit flip

fault occurs in component. Fault distribution over locations is randomly chosen with an

uniform probability distribution.

2.3 Discrete Reliability
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 port() ;
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entity ram_mem is
 generic() ;
 port() ;
end ram_mem ;
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 generic() ;
 port() ;
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 generic() ;
 port() ;
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 generic() ;
 port() ;
end regis_inject ;

RANDOM
FAULT LOCATION
AND TIME
GENERATOR

FAULT INJECTOR 

PROFILER

FAULT
SELECTION
LOGIC



Figure 3. Relationship between the various time interval

As shown in Figure 3, the software embedded in computer system is either in idle state

or in execution state. The software is idle during the time ζi between the i-1th and ith

execution state. The ith execution of the software begins after this idle time ζi and

continues for the execution time τi. Since τi is very small compared with the idle time ζi, it

is reasonable to assume that τ1  ≈ ... ≈ τi ≈ ... ≈ τ. The software completes its first execution

at time t1 and the second execution of the software is finished at time t2.

A. The fault coverage function

When n faults are injected into system, the fault coverage of hardware fault detection

and recovery mechanism is modeled as a two-event discrete random variable yi(t)( i = 1, 2,

… , n) defined as follows12 :
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In this case, the error state is signaled and faults are removed from the system. In

addition, hardware faults could be removed or masked by only software without hardware

error masking mechanisms. Therefore, to determine the system fault coverage correctly,

the software error masking effect is considered. To include the software masking effect

and estimate the reliability, the equations (1,2,3) is extended as follows:
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When the system failure is defined as unacceptable output of the software, Equation (3)

can be rewritten as discrete function. In Figure 3, if the fault is injected before time t1, the

coverage function at time t1 is given by
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where tf is fault injection time. Although faults injected before time t1 are not removed by

hardware fault tolerant mechanism, the acceptable results by software error masking can

be delivered at time t1. These faults are not removed in case of permanent fault type and

become sources of the system failure during the second software execution. For faults

injected before time t1, The coverage function at time t2 is given by
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Generally, the coverage function at time tk is as follow:
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If the faults are injected in [tk-1, tk], the coverage function at time tk is equal to the

equation (7) statistically.
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Generally, the coverage function is as follows:
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B. Discrete Reliability Estimation

The reliability expression for a non-maintained fault-tolerant system can be written as:12
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where )(tFΦ  and )( FF tφ  are the cumulative distribution and density function of the

fault occurrence process of the target system respectively and )(tC  is probability density

function of coverage function. This equation can be also rewritten as a discrete function.

The reliability at time t0 (= 0) is given by
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and the reliability at time t1, t2 is given by
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Generally, we have reliability at time ti as the follows:
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3. Model Application

The target ILS software is a part of AFS-1000 system developed by Forney

International Cooperation and installed in YGN nuclear power units 3 and 4 in Korea. It is

constructed in the Intel 8085 assembly language using top-down modular design

techniques. Intel 8085 processor has the 15 registers (AC, P, S, CY, Z, ACC, B, C, D, E, H,

L, IR, SP, PC).13 On board memory capabilities include the two 1K x 1 read/write

memories for single bit data storage and a 1K x 8 read/write memory for 8 bit data storage.

Read-only-memory capability ranges from 1K bytes to the maximum 48K bytes. The

software is used in a control system and is of very simple logic algorithm, which leads to

the result, ‘yes’ or ‘no’. In addition, the inputs of the software have only two kinds of

values, 0 or 1. The 10,000 faults for each type of faults are injected into VHDL simulation

model and ten cycles of software execution for each faults is inspected to determine

whether the system fails or not.

Figure 4 shows four cases of the software operational profile. The operational profiles

of the software are determined by thirteen inputs. These four cases were prepared to show

how the software masking effect changes for different operational profile. The y-axis is the

probability that each inputs of the software has the value, 0. Figure 5 shows the software

masking effect of stuck-at-x fault in registers to the four operational profile cases. For the

stuck-at-zero fault, the system fails as soon as the fault occurs in registers of processor.

99.98 % of 10,000 faults cause the system failure for the first software execution. But, for
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Figure 4. Operational profile of ILS



the stuck-at-1 faults, although 94.5 % of 10,000 faults induce the system failure during the

first cycle, the software masks some faults and puts off the system failure for the a few

software execution cycles. Specially, when the software runs by operation profile (d), the

software masks the faults for period longer than ten cycles. Figure 6 shows the software

masking effect of stuck-at-x fault in memory. In this experiment, the faults are injected

into only region occupied by the software. The shape of curves is similar to that of stuck-

at-zero fault in registers of microprocessor. Figure 7 shows the case of transient bit-flip

fault injection into the registers of microprocessor. The system failure occurs only at the

first cycle. In case of bit-flip fault injection experiment, it was shown that if the faults do

not cause the system failure at the first cycle they are recovered by software. Table 1

shows the coverage value of stuck-at-X faults in memory by software error masking.

Figure 8 shows the system reliability by memory faults with considering software error

masking effect in case of operational profile (a). The memory fault rate is one per 10000

hr.
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Figure 5. Software masking effect of stuck-at-X fault in registers
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Coverage
Profile

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

a 0.0138 0.0041 0.0028 0.001 0.0004 0.0002 0.0002 0 0 0
b 0.0186 0.0069 0.0052 0.0029 0.0012 0.0003 0.0001 0 0 0

c 0.0131 0.0043 0.0032 0.0011 0.0004 0.0003 0.0001 0 0 0
d 0.0113 0.0031 0.0024 0.0008 0.0004 0.0002 0.0001 0 0 0

Table 1. Software coverage of stock-at-X in memory

4. Summary and Conclusions

In case of this application software, some of stuck-at-one faults in registers can be

masked during a few software execution cycles but the stuck-at-zero faults have very short

latency time. That is, The software is sensitive to the stuck-at-zero fault in registers. The
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software has large coverage value for bit-flip faults in registers compared with other faults

and removes the transient faults.

In this work, VHDL-based simulation model for fault injection is developed to estimate

the reliability of the digital system in operational phase with considering the software

masking effect of hardware faults. The faults occurred in system must escape not only the

fault tolerance mechanisms but also software masking of hardware faults to cause the

failure of the system. Therefore, for estimating the reliability of digital system accurately

in operational phase, operational input profile of software is considered because the

software execution by different operational profile can mask the different type of faults.
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