

Abstract

The influence of the turbulent mixing model employed in a subchannel analysis code was investigated in this study, especially on the prediction of the critical heat flux (CHF) in rod bundles. The equalvolume-exchange turbulent mixing and void drift model was employed in the MATRA code, and the void drift coefficient was optimized through the analysis of two-phase flow distribution data for GE 9-rod and Ispra 16-rod test bundles. The influence of the subchannel analysis model on the analysis of CHF was examined by evaluating the CHF test data in rod bundles representing PWR and BWR conditions. The CHFR margin of typical LWR cores was evaluated by taking into account the influence on the local parameter CHF correlation and the hot channel analysis result. As the result, it appeared that the turbulent mixing model has an important effect on the prediction of CHF under the low pressure and the closedassembly-channel conditions.

1. CHF(Critical Heat Flux) 99

· CHF , 가 가 · · · · · · · · ·

.

,

CHF CHF

[2]. MATRA , . PWR

BWR CHF 가 가.

2.

MATRA

•

$$A_{i}\frac{\partial \boldsymbol{r}_{i}}{\partial t} + \frac{\partial \boldsymbol{n}_{i}}{\partial z} + \sum_{j} w_{ij} + \sum_{j} \boldsymbol{0}'_{ij} - w'_{ji} \, \boldsymbol{i} = 0, \qquad (1)$$

,

i

.

$$A_{i}\frac{\partial}{\partial t}\mathbf{b}_{i}h_{i}\mathbf{G}\frac{\partial}{\partial z}\mathbf{G}_{i}\vec{h}_{i}\vec{\mathbf{j}} + \sum_{j}w_{ij}\vec{h}^{*} + \sum_{j}\mathbf{G}_{ij}h_{i} - w'_{ji}h_{j}\vec{\mathbf{i}} = Q, \qquad (2)$$

$$\frac{\partial n x_i}{\partial t} + \frac{\partial}{\partial z} \frac{\partial x^2 u'}{\partial x} + \sum_j w_{ij} u^* + \sum_j f_T \mathbf{O} \mathbf{v}'_{ij} u_i - \mathbf{w}'_{ji} u_j \mathbf{i} = -A \frac{\partial P}{\partial z} - F_{ax}.$$
(3)

i j . i j (v'_{ij}) 7t

$$w'_{ij} \equiv \boldsymbol{r}_i s_{ij} v'_{ij} \,. \tag{4}$$

.

.

(**b**)

,

,

$$w'_{ij} = \boldsymbol{b} \cdot \boldsymbol{s}_{ij} \cdot \boldsymbol{G}_{ij} \,. \tag{5}$$

$$w'_{i\leftrightarrow j} \equiv w'_{ij} - w'_{ji} = \mathbf{O}'_{ij} \mathbf{i}_{SP} \cdot \mathbf{q} \cdot \mathbf{p}_{j} - \mathbf{a}_{i} \mathbf{i} - K_{VD} \frac{\mathbf{O}'_{j} - G_{i} \mathbf{i}}{G_{avg}} \mathbf{f}, \qquad (6)$$

$$THERMIT \qquad 1.4 \quad 7^{\dagger}$$

$$[4]. \qquad \mathbf{q} \quad Beus \quad [5]$$

$$. THERMIT \qquad MATRA \qquad ,$$

$$PWR \quad BWR \qquad MATRA \qquad ,$$

$$ISpra 16-rod \qquad 1 \qquad .$$

-

$$K_{VD} = 0.72 \left[\begin{array}{c} P_r \\ P_r \end{array} \right]^{1.33} \cdot \left[\begin{array}{c} c - c_{osv} \\ c - c_{osv} \end{array} \right] + \quad \text{for } c < c_C, \quad (7)$$

$$K_{vD} = 0.72 \bigoplus_{P_r}^{P_r} \sum_{r}^{1.33} + 10 \cdot \bigoplus_{C}^{P_r} - c_{osv} - 1 \sum_{r}^{I_{osv}} - 1 \sum_{r}^{I_{$$

$$\mathbf{c}_{c} = \frac{0.4\sqrt{gD_{hy}}\mathbf{r}_{f}\Delta\mathbf{r}/G + 0.6}{\sqrt{\mathbf{r}_{f}/\mathbf{r}_{g}} + 0.6}$$
(9)
7 \text{ (OSV: Onset of Significant Void) (\mathbf{c}_{osv}) Levy
[7] . 1 GE 9-rod[8] Ispra 16-rod[9]
(EM: Equal-Mass exchange)

,

THERMIT $K_{VD}=1.4$ 2 PWR , (EUROP-PWR) 10% . (<u>EVVD</u>: <u>Equal-Volume exchange and Void Drift</u>) (7) (8) 3 , •

3. CHFR

,

CHF CHFR 가

3.1 CHF

PWR BWR 6 가 CHF 2 [10] . 4 , TS-310 TS-317 CHF 가 EVVD BWR 가 가 CHF , BWR (critical quality) Hench & Gillis .

[11] TS-310 TS-317 100 bar

•	5		EVVD		EN	Λ		
							(CHF
		,		CH	IF	가		
•	6	EVV	/D				CHF	
	가	, EM	ĺ					
			가	(CHF			
가								
$q''_{CHF} = \frac{B - c}{C}$	2							(10)
CHF								CHF
		•		(<i>B C</i>)	가			
		,		EPRI-1	[12]			
$B = b_1 \cdot P_r^{b_2}$	$\cdot G^{b_{s}+b_{\gamma}\cdot P_{r}} \mathbf{G}$							(11)
$C = b_3 \cdot P_r^{b_4}$	$\cdot G^{b_6+b_8\cdot P_r} \underline{C}$							(12)
	CHF						4	
(b ₂ , b ₄ ,	b ₇ ,	b ₈) E	PRI-1					,
4	MAT	RA		CHF				
	4 가				3		. CH	IF
							, t-test	5%
significance le	vel		0			P/M		
D' -test[13]	가	B-1	B-2		95%			
가	, P-1	P-2		7				
		B-1	B-2		CHFR	Owen	one-sided	l tolerance
factor[14]			, P-1	P-2				
tolerance limit		[15]			3			
				71				
3.2				イ				

PWR BWR HBM(Heat Balance Method) [16] 7¹.

가 가 CHF 8 CHF curve energy . balance curve , 가 . CHF curve CHF . Energy balance curve MATRA , PWR 1/8lumping , BWR 17x17 [17] 1/8• BWR [18] 가 가 4 . PWR 가 EVVD 가 CHF EM CHF BWR . EVVD 가 (, energy balance curve 가 가 , CHF curve 가) . 8 CHF 가 CHF CHF , CHF curve BWR CHF

4.

(1) MATRA , GE 9-rod Ispra 16-rod 가 • 가 (2) CHF . PWR BWR CHF CHF PWR BWR , CHFR 가 CHF .

- [1] Yoo, Y. J., et al., Development of a subchannel analysis code MATRA applicable to PWRs and ALWRs, J. Korean Nuclear Society 31, to appear (1999).
- [2] Wolf, L., et al., Comprehensive assessment of the Ispra BWR and PWR subchannel experiments and code analysis with different two-phase models and solution schemes, Nucl. Engrg. Des. 99, 329-350 (1987).
- [3] Lahey, Jr., R. T. and F. J. Moody, The Thermal Hydraulics of a Boiling Water Nuclear Reactor, ANS Monograph, Second ed., New York, pp. 168-184 (1993).
- [4] Kelly, J. E., et al., THERMIT-2: A two-fluid model for light water reactor subchannel transient analysis, MIT-EL 81-014 (April 1981)..
- [5] Beus, S.G., A two-phase turbulent mixing model for flow in rod bundles, WAPD-T-2438 (1971).
- [6] Wallis, G. B., One-dimensional Two-phase Flow, McGraw-Hill, New York, pp. 345-351 (1969).
- [7] Levy, S., Forced convection subcooled boiling prediction of vapor volumetric fraction, Int. J. Heat Mass Transfer 10, 951-965 (1967).
- [8] Lahey, Jr., R. T., et al., Two-phase flow and heat transfer in multirod geometries: Subchannel and pressure drop measurements in a nine-rod bundle for diabatic and adiabatic conditions, GEAP-13049 (March 1970).
- [9] Herkenrath, H., et al., Experimental investigation of the enthalpy and mass flow distribution in 16-rod clusters with BWR and PWR geometries and conditions, EUR-7575 EN (1981).
- [10] Fighetti, C. F. and D. G. Reddy, Parametric study of CHF data Volume 3: Critical heat flux data, EPRI-NP-2609 (September 1982).
- [11] Hench, J. E. and J. C. Gillis, Correlation of critical heat flux data for application to boiling water reactor conditions, EPRI-NP-1898 (June 1981).
- [12] Reddy, D. G. and C. F. Fighetty, Parametric study of CHF data Volume 2: A generalized subchannel CHF correlation for PWR and BWR fuel assemblies, EPRI-NP-2609 (January 1983).
- [13] ANSI, Assessment of the assumption of normality (employing individual observed values), ANSI, N15.15 (1974).
- [14] Owen, D. B., Factors for one-sided tolerance limits and for variables sampling plans, SCR-607 (March 1963).
- [15] Somerville, P. N., Tables for obtaining non-parametric tolerance limits, Annals of Mathematical Statistics 29, 599-601 (1958).
- [16] Hejzlar, P. and N. E. Todreas, Consideration of critical heat flux margin prediction by subcooled or low quality critical heat flux correlations, Nucl. Engrg. Des. 163, 215-223 (1996).
- [17] Hwang, D. H., et al., Evaluation of the thermal margin in a KOFA-loaded core by a multichannel analysis methodology, J. Korean Nuclear Society 27, 518-531 (1995).
- [18] Knief, R. A., Nuclear Energy Technology: Theory and practice of commercial nuclear power, Hemisphere, Washinton, pp. 565-570 (1981).

CHFR

	GE 9-rod	Ispra 16-rod		
Name of test bundle	GE	PELCO-S	EUROP-BWR	EUROP-PWR
Rod array	3x3	4x4	4x4	4x4
Heated length, m	1.83	3.66	3.66	3.66
Rod diameter, mm	14.5	15	10.8	10.8
Rod pitch, mm	18.8	19.5	14.3	14.3
Hydraulic diameter, mm				
- inner channel	16.4	17.3	13.5	13.5
- side channel	11.3	11.5	9.4	9.4
- corner channel	7.1	7.1	6.8	6.8
Radial power distribution	uniform	uniform	uniform	uniform
Axial power distribution	uniform	uniform	uniform	uniform
Pressure, bar	69	70	70	160
Mass velocity, kg/m²/s	720 ~ 1460	910 ~ 1930	970 ~ 2060	2180 ~ 3250
Bundle exit quality	0.03 ~ 0.32	0.02 ~ 0.31	-0.17 ~ 0.24	-0.17 ~ 0.20
Number of data points	13	208	49	205

2. CHF

	TS-304	TS-318	TS-310	TS-317	TS-156	TS-161
Rod array	4x4	4x4	4x4	4x4	5x5	5x5
Heated length, m	1.83	1.83	1.83	1.83	4.27	4.27
Rod diameter, mm	14.3	14.3	14.3	14.3	9.5	9.5
Rod pitch, mm	18.7	18.7	18.7	18.7	12.6	12.6
Grid spacing, m	0.241	0.495	0.495	0.495	0.660	0.559
Grid loss coefficient	0.8	1.47	1.47	1.47	1.25	1.25
Rod peaking factor	1.262	1.232	1.610	1.204	1.108	1.109
CHF channel location	inner	inner	corner	corner	inner	inner
Pressure, bar	69	69~155	69	69~155	103~166	103~166
Mass flux, kg/m²/s	680~	1350~	135~	340~	1290~	1280~
	1700	4070	1700	4070	4710	4800
Critical quality	0.31~	0.02~	0.25~	-0.02~	0.01~	0.15~
	0.61	0.36	0.76	0.63	0.42	0.43
Number of data	26	72	21	70	67	67

CHF

CHFR

		PWR condition		BWR condition		
		EM model	EVVD model	EM model	EVVD model	
CHF data base		TS-156 & TS-161		TS-304 & TS-318		
Coefficients of CHF correlation (in British unit: q" _{CHF} in Mbtu/hr/ft ² , G in Mlbm/hr/ft ²)	b_1 b_3 b_5 b_6	0.7647 2.4482 -0.0653 0.8205	0.7129 2.2568 -0.0949 0.7833	1.2431 4.9247 -1.4398 -1.3778	1.0278 3.9858 -1.3205 -1.2212	
	b_2 b_4 b_7 b_8	0.1212 1.4066 -0.3285 -2.0749				
Mean of P/M Standard deviation of P/M Number of data points k _{95/95} Correlation limit CHFR		1.003 0.134 134 N/A 1.410	1.002 0.130 134 N/A 1.378	1.004 0.119 98 1.930 1.234	$ 1.005 \\ 0.116 \\ 98 \\ 1.930 \\ 1.228 $	
Name of CHF correlation		P-1	P-2	B-1	B-2	

4.

	BWR	PWR
Pressure, bar	71.7	157.2
Core inlet temperature, deg-C	278	292
Average mass flux, kg/m²/s	1330	3370
Core average heat flux, kW/m ²	493	596
Radial peaking factor	1.4	1.49
Axial peaking factor	1.0	1.0
Fuel rod diameter, mm	12.3	9.5
Fuel rod pitch, mm	16.2	12.6
Heated length, m	3.81	3.66
Fuel assembly	closed-channel	open
Rod array in the FA	8-by-8	17-by-17

가

1. EM

2. THERMIT

3. EVVD

4. CHF

P/M

8.