

, , , , 105

305-600

Abstract

A multiple parallel flow path model and pressure loss model of the each component are proposed to predict the pressure loss coefficient of the duct type grid in single-phase flow. The multiple parallel flow path model is generated by the energy conservation and momentum equations. The channel specific component pressure loss coefficients are combined on the basis of the free flow principle. The available literatures provide pressure loss coefficient needed for each component in a channel. The proposed model reasonably predicts available grid pressure loss data, therefore the model is suitable as a tool for the grid optimization in grid development phase.

1.

가

가

,

,

$$C = \frac{\Delta P_{sg}}{\frac{1}{2} \mathbf{r} V_o^2}$$
(2)

가 10⁵ 6 7

Reynolds

$$\Delta P_{sg}$$
 \mathbf{r} , V_o

Reynolds

Rehme(1973) FBR

•

.

. Cevolani(1995) Rehme 7 FBR FBR

. Kim(1993)

. Kim

•

. Oh(1998)

2. . . • 2 (III, IV), (V, VI), (I) (II), (VII) •

2.1

		3	
3	b c	3	
		가	
-	3 a d		
-	3 a c, d		Р
가	3		(3)
	$P_a + \frac{r}{2}V_a^2 = I$	$P_{c} + \frac{\mathbf{r}}{2}V_{c,i}^{2} + K_{ac,i}^{b} \frac{\mathbf{r}}{2}V_{b,i}^{2}$; $i = 1, K$, N	(3)
i	, $K^b_{ac,i}$	a c	b
		(stagnation loss coefficient	cient) .
가		с	$V_{c,i} = V_{b,i} \frac{A_{b,i}}{A_{c,i}}$
	(3)	(4) .	
	$P_a + \frac{\boldsymbol{r}}{2}V_a^2 - P_a$	$\mathbf{r}_{c} = \frac{\mathbf{r}}{2} \mathbf{P}_{ac,i}^{b} + \mathbf{P}_{ac,i}^{a} \mathbf{P}_{b,i}^{2} \mathbf{V}_{b,i}^{2} ; i = 1$,к, <i>N</i> (4)
а	b	(5-a) (5-b)	(5-c)

PWR

•

•

•

•

$$A_b = \sum_{i=1}^{N} A_{b,i}$$
 (5-a) $A_c = \sum_{i=1}^{N} A_{c,i}$ (5-b) $V_b = V_a \frac{A_a}{A_b}$ (5-c)

,

a b

.

$$A_a V_a = \sum_{i=1}^N A_{b,i} V_{b,i} \tag{6}$$

(6) (5-c) (7) .

$$1 = \sum_{i=1}^{N} \overbrace{b_{b}, i}^{b_{b}, i} \overbrace{b_{b}, i}^{b_{b}, i}$$
(7)

a c

.

$$P_{a} - P_{c} = C_{ac}^{b} \frac{1}{2} V_{b}^{2}$$
⁽⁸⁾

$$C_{ac}^{b} = \frac{1}{\left| \frac{1}{\sqrt{K_{ac,i}^{b} + \left| \frac{A_{b,i}}{A_{c,i}} \right|^{2}}} \right|^{2}} - \left| \frac{A_{b,i}}{A_{a}} \right|^{2}}{\left| \sqrt{K_{ac,i}^{b} + \left| \frac{A_{b,i}}{A_{c,i}} \right|^{2}} \right|^{2}} \right|} \right|$$
(9)

$$P_{c} - P_{d} = \frac{\mathbf{r}}{A_{d}} \sum_{i=1}^{N} A_{c,i} V_{c,i} (V_{d} - V_{c,i})$$
(10)
c d (10)

$$\begin{array}{ccc} (8) & c & d \\ c & d & (11) & . \end{array}$$

$$C_{cd}^{b} = 2 \frac{A_{b}}{A_{d}} + \frac{2}{A_{d}} \sum_{i=1}^{N} \frac{A_{b,i}}{A_{b}} + \frac{A_{b,i}}{A_{b}} + \frac{A_{b,i}}{A_{b}} + \frac{A_{b,i}}{A_{c,i}} + \frac{2}{A_{b,i}}$$
(11)

(9) (11) a c
$$C_{ac}^b$$
 c d

$$C^b_{cd}$$
 A_b

$$C_{ad}^b = C_{ac}^b + C_{cd}^b \tag{12}$$

•

0.5 가 .

•

3.

•

가 . Type A 17X17 Type B 14X14	Westinghouse ABB-CE		2	
4 Туре А	1.4%	8.4%		Туре В
		Reynolds		
Reynolds		Reynolds		
		가		
	Reynolds			

가

 Table 2. Geometric Parameters of the Duct Type Spacer Grids

Parameter	Type A	Type B
Rod Array	17×17	14×14
Rod Diameter, D[mm]	9.55	11.2
Pitch to Diameter, P/D	1.319	1.316
Grid Height, L[mm]	44.45	44.45
Strap Thickness, t[mm]	0.381	0.356
Bending Angle, δ[deg]	20	20
Number of Guide Tubes	25	5

(free flow principle)

Westinghouse

[m]

[m] $[kg/m^3]$ ABB-CE

Reynolds

가

가

NOMENCLATURES

.

BWR boiling water reactor PWR pressurized water reactor FRB fast breeder reactor А flow area $[m^{2}]$ AP $[m^2]$ projected area С static pressure loss coefficient Dh hydraulic diameter [m] Κ stagnation pressure loss coefficient L friction length [m] Р static pressure [Pa] PW wetted perimeter [m] R radius of curvature [m] Re Reynolds number number of grids in a bundle n

GREEK LETTERS

Δ	difference
α	duct width
β	duct length
ρ	density
δ	bending angle
e	area blocking ratio

.

SUBSCRIPT

ad	area decrease
ah	inlet anti hanging tab
aht	exit anti hanging tab
ai	area increase
db	duct bending
df	diffuser
dn	downstream nugget
f	friction
ic	inlet contraction
1	local
m	grid middle level
0	bare rod
r	reference (b position in Fig. 3)
rd	rod
sd	sudden decrease
sg	spacer grid
t	tab
un	upstream nugget

4.

REFERENCES

- Rehme K., "Pressure Drop Correlation for Fuel Element Spacers," Nuclear Technology, Vol. 17, 15-23 (1973)
- 2. Cevolani, S., "ENEA Thermal Hydraulic Data Base for the Advanced Water Cooled Reactor Analysis, IAEA 1st Research Co-ordination Meeting of CRP on Thermal Hydraulic Relationships for Advanced Water Cooled Reactors, Vienna, 5-8 (1995)
- 3. Kim, N. H., Lee S. K. and Moon K. S., "Elementary Model to Predict the Pressure Loss Across a Spacer Grid without a Mixing Vane," Nuclear Technology, Vol. 98, 349 353, (1992)
- 4. Oh, D. S., et al., "A Pressure Drop Model for PWR Grids," Proceedings of the KNS Spring Meeting Seoul, Korea, May (1998)
- 5.SPC, "SPC 17x17 (15mil) EDF HTP Pressure Drop Test in the Hermes-P Loop," E-5023-906-2, (1992)
- 6. Hoerner, S. F., "Fluid Dynamic Drag," 2nd edition Published by the Author, (1965)
- 7. Idelchik, I. E., "Handbook of Hydraulic Resistance," 3rd edition Published by Begell House, (1996)

No	Component	Model	Ref.
1	Friction, K_f	$\begin{bmatrix} A_{r} \\ A_{l} \\ A_$	[5]
2	Inlet anti tab, K_{ah}	$ 707 \cdot \begin{bmatrix} A_l \\ A_o \end{bmatrix} \stackrel{(0.375)}{\leftarrow} + \begin{bmatrix} A_l \\ A_r \end{bmatrix} \stackrel{(2)}{\leftarrow} \begin{bmatrix} A_l \\ A_l \end{bmatrix} \stackrel{(2)}{\leftarrow} \stackrel{(2)}{\leftarrow} \begin{bmatrix} A_l \\ A_l \end{bmatrix} \stackrel{(2)}{\leftarrow} \stackrel{(2)}{\leftarrow}$	[7] diag. 4-11
3	Inlet contraction, K_{ic}	$0.5 \cdot \left[\frac{A_r}{A_o} \right]^{3/4}$	[7] diag. 4-9
4	Upstream nugget, K _{un}	$0.2 \cdot \frac{\boldsymbol{e}_{ng}}{\boldsymbol{O} - \boldsymbol{e}_{ng} \boldsymbol{i}^2}, \boldsymbol{e}_{ng} = \frac{AP_{ng}}{A_r}$	[6] ch. 3 fig. 21
5	Diffuser loss, K_{df}	$0.5 \cdot \left[\frac{A_r}{A_l} \right]^2$	[7] diag. 4-1
6	Sudden area increase, K_{ai}	$0.5 \cdot \frac{\boldsymbol{e}_{ai}}{\boldsymbol{b}_{ai} - 1 \hat{\boldsymbol{G}}} \boldsymbol{\boldsymbol{\beta}}_{m}^{r} $	[6] ch. 3 fig. 22
7	Sudden area decrease, K_{ad}	$0.4 \cdot \boldsymbol{e}_{ad} \boldsymbol{\xi}_{m}^{r} \boldsymbol{\xi}^{2}, \boldsymbol{e}_{ad} = \frac{A_{sd}}{A_{m}}$	[6] ch. 3 fig. 22
8	Duct bending, K_{db}	$16 + 8.65 \xrightarrow{Ph_r}_{R} \swarrow \xrightarrow{1.32}_{R} \swarrow \xrightarrow{0.34}_{R} \bigotimes \xrightarrow{0.25}_{R} \xrightarrow{h_r}_{h_o} \swarrow \xrightarrow{0.25}_{R} \swarrow \xrightarrow{R}_{h_r} \cdot \boldsymbol{d} \cdot (\frac{V_r}{V_o})^{-0.25}$	[7] diag. 4-1
9	Downstream nugget, K_{dn}	$0.5 \cdot \begin{bmatrix} A_l \\ A_r \end{bmatrix}^{3/4} \begin{bmatrix} A_r \\ A_l \end{bmatrix}^2, A_l = A_r - AP_{ng}$	[7] diag. 4-9
10	Exit anti tab, K_{aht}	$1.7 \cdot \frac{\boldsymbol{e}_{aht}}{\boldsymbol{D} - \boldsymbol{e}_{aht}} \hat{\boldsymbol{G}}, \boldsymbol{e}_{aht} = \frac{AP_t}{A_r}$	[6] ch. 3 fig. 8
	2	3 4 5 6 1 7 8 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 7 9 7 7 7 9 7 7 7 7 7 7 9 7 7 7 7 7 7 7 7	

Table 1. Pressure Loss Coefficient Model for Each Component

Figure 1. Spacer Grids

Figure 2. Subchannels for Duct Type Grid

3 paths shown in general N paths

Figure 3. Multiple Parallel Flow Path

Figure 4. Evaluation of the Pressure Loss Model