

· 99

An algorithm estimating the mass of loose part has been developed based on the Hertz theory which is generally used for estimating the mass and energy of a spherical metal impacted on the infinite plate. The theory was modified considering the amplitude and energy attenuation effects in order to apply for nuclear power plant. To verify the new algorithm, a variety of impact tests has been performed with various steel balls at laboratory mock-up and real power plant, respectively. As a result, the mass estimation for the tested balls showed better result than the former Hertz algorithm's

1.

LPMS

(Accelerometer)

가

LPMS

2.1 Hertz

2.

1.

$$D_{\max} = K_h (mV_0^2)^{0.4} R^{-0.2}$$
(1)

$$T_d = 2.94 \frac{D_{\text{max}}}{V_0}$$
 (2)

$$K_{h} = \left[\frac{15}{16} \left(\frac{1 - v_{1}^{2}}{E_{1}} - \frac{1 - v_{2}^{2}}{E_{2}}\right)\right]^{0.4}$$

$$7!$$

$$7!$$

$$7!$$

$$7!$$

$$7!$$

.

.

.

.

가

$$D(t) = D_{\max} \sin\left(\frac{p}{T_d}t\right)$$
(4)

$$D'(t) = V(t) = \frac{\mathbf{p}}{T_d} D_{\max} \cos\left(\frac{\mathbf{p}}{T_d} t\right)$$
(5)

$$D^{''}(t) = A(t) = -\left(\frac{\mathbf{p}}{T_d}\right)^2 D_{\max} \sin\left(\frac{\mathbf{p}}{T_d}t\right)$$

$$7$$

$$(6)$$

$$F(t) = m A(t)$$
(7)

t
$$0 < t < T_d$$
 , 7^{1} T_d
. cosine 1 , (8)

$$V_{max} = V(0) = V_0 = \pi/T_d D_{max}$$
 (8)
7; (9)

$T_d = \pi D_{max} / D_{max}$	\mathbf{V}_0			(9)
Hertz	0.7 %			
		가		
, 가				
$T = T_{d}/1$.6			(10)
, T : , T _d :				()
(half wave)	1.6			
2.3 7				
Hertz	가	가		가
	가		가	
	가		•	
71			가	. (11)
$A_{\text{plate}} = F_{\text{max}} / m = -$	$k \frac{-1}{h} m = 0.4 V \frac{1}{0} \frac{3}{1}$	$R^{0.2}$		(11)
(11)	Plate			. 가
(11) F _{max}		가	가	
$A_{plate} = F_{max} / N_{r}$	I _{eff}		·	, (12)

,

π

$\mathbf{M}_{\mathrm{eff}} = 1$	$\pi \left(C_{b} T_{d}\right)^{2} h \rho_{steel}$		(1	3)
[C _b =	(Bending Wave)	= C_{LI} (1.8hf _a	/ C _{LI} + 4.5h	f _a) ^{0.5}]
$, C_{LI} = 5,$	270 m/sec , $T_d =$, h =	(f	t),
ρ_{steel} =				
2.4				
(12),(13)			가	
				가
		가		
Damping	·	,		
		가		
Damping				
		[8].		
2.4.1				
			가	
	. Hank	tel Function		,
r		(14)		
D(r)	$= D_0 \left[H_0 \left(kr \right) - H_0 \right]$	(- jkr)]		(14)
$, H_{o}(\mathbf{kr}) = 2$	$2/\pi j \ln (kr) \{ kr \ll 1 \}, H_0(kr) = (2)$	$2/\pi kr)^{0.5} exp(-(x-\pi/4)j) \{ kr $	$>>1\}$, D_0 :	
, D(r) :	r	, $\mathbf{k} : 2\pi \mathbf{f} / \mathbf{D}_{o}$, $\mathbf{H}_{o} : \mathbf{D}_{o}$	Hankel Functio	n of 2 nd kind.

2.4.2 Damping

Damping

 $C_{g} = \frac{3.6 C_{LI}^{2} h_{f}}{C_{b} (C_{LI} + 9 h_{f})} \quad h = \frac{\mathbf{r}_{0} c_{0}}{2 \mathbf{p} f \mathbf{r}_{s} h} \times \frac{M_{f}}{\sqrt{M_{f}^{2} - 1}}$ $7 \downarrow \qquad D(\mathbf{r}) \qquad , (15)$ $D_{0} \qquad .$

, 가 , (16)

 $m = 3/4 \pi R^{3} \rho_{steel}$ (16) , m: , R: , ρ_{steel} : .

,

3. I (Mockup)

mockup 1/7 4 . 4 , , , 가 . . 가 60° 18 , 14 ,

14 가 [7].

4.

5.

· ·

. 5 . 1 5

•

22 %

.

•

70cm, 110cm

3

가 . 1. 1.9cm

가

-	(g)	(%)	(cm)	(%)
30-1	49.96	63.80	2.2634	19.13
30-2	50.14	64.39	2.3142	21.8
30-3	53.14	75.21	2.3216	22.19
70-1	52.42	71.87	2.3437	23.35
70-2	49.64	62.75	2.3015	21.13
70-3	51.35	68.36	2.3276	22.5
110-1	54.34	78.16	2.3720	24.84
110-2	50.71	66.26	2.3179	21.99
110-3	52.54	72.26	2.3455	23.44

4. II

				6 7	1
	tape recor	der			
	,	가	가 1	2	
,	가 3		2		
2.115 m ,		7.8 m/sec	, hot cham	ber	1.23 m/sec
	1.5	5 m	samp	ling time 3	* 10^{-5} sec .
8 9			. 8	9	5
					가
	,		(Circular Ir	tersection Me	thod) .
		1.9 m	,		139. 763
m/sec ,	75.37 use	c			
	500 – 600 gram				
	가	2.	2		
가					
Hertz				,	
		가			mockup
	가				가

(I)()	(II)()	
500 – 600 gram	1.5 pound(600gram)	200 gram
300 – 400 gram	1 pound(450gram)	100 gram

6.

5.

가 mock up . 20 - 30% • , .

,

Hertz

.

,

1. EPRI NP-5734, Loose - Parts Monitoring System Improvements, March, 1988.

가

,

 ReG. Guide 1.133, Loose-Parts Detection Program for the Primary System of Light Water Reactors, U.S.NRC, May, 1981.

.

- Technical Manual, Digital Metal Impact Monitoring Systems(DMIMS) for Korea Nuclear Unit 5 & 6.
- 4. I.K Rhee, et,al, "Development of Loose Part Signal Location Estimating Technique in High Pressured Structure", KAERI/CM/94.
- 5. Joseph A.Thie, Power Reactor Noise, American Nuclear Society, 1981.
- W.K.Shin, etc.,"A study on the plant Diagnostic Techniques Using Reactor Noise", KAERI/NSC-454/89.
 - 7. ," ", KAERI/CM-146/96.
 - 8. L. Cremer, et.al, Structure-Borne Sound, New-York: Springer-Verlag, 1973.