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Abstract

The methods for obtaining the mathematicd and the physicd adjoint solutions to the neutron diffuson
equation formulated with the equivaence theory in the hexagond geometry are presented under the
framework of the AFEN-type nodal methods. The mathematica adjoint coupling equations whose
coefficients have the opposite meanings in a response matrix sense to those of the forward coupling
equations are derived by trangposing the forward noda coupling equations. Although it has been believed
that it isimpossible or nearly impossible to derive the physica adjoint coupling equiations when discontinuity
factors are nvolved in nodal methods, the physicad adjoint coupling equetions are derived based on the
adjoint current discontinuity across interfaces ingtead of the flux discontinuity in the forward coupling
equations. Two adjoint fluxes have turned out to beidentica in the case of finite difference formulation with
discontinuity factors. The results of a numericd test show tha the physcd adjoint flux defined here is
condstent to the mathematica adjoint flux even though discontinuity factors are involved.

1 Introduction

The perturbation theory provides a means to predict the response of dependent parameters (e.g., reactivity
or reaction rates) to relatively smdl perturbations in independent parameters (e.g., minor changes in the
core loading pettern, feedback parameters, or control rod postions) without actudly caculaing the
perturbed configuration, but rather by using the unperturbed quantities. The perturbation formula generaly
requires not only the forward solution but aso the adjoint solution. For the use of perturbation theory in the
reactor analysis employing a noda method, the adjoint solution scheme must be established for the specific
nodal method.

Lawrence (Lawrence, 1984) introduced two different adjoint solutionsin his discussion on the perturbation
theory for the Nodal Expansion Method (NEM). The physical adjoint flux isthe solution f ; of the marix
equation L'f ;=0 where L is the internodal coupling matrix obtained by discretizing the adjoint differential
diffusion equation. On the other hand, the mathematical adjoint flux is the solution f ; of the matrix
equation L'f =0 where L is the transpose of the coupling matrix associated with the forward nodd
unknowns, which are discretized from the forward diffusion equation. If L™ isequa to L™ asin the Finite
Difference Method (FDM), the two adjoint fluxes become identical. L™ and LT are not generdly identical
for higher order noda methods.



Cacuci criticized the terminology introduced by Lawrence and reminded us of the work done by him and
two others (Cacuci, 1997) where two adjoints are referred to as the operator formalism and the matrix
formalism. In spite of its inappropriateness, we keep Lawrence’ s terminology throughout this paper due
to its familiarity to the researchersin the field of nodal methods.

Congdering the responses to be predicted by the perturbation theory are certainly the derived quantities
from the solution of the forward equations at the perturbed state which is dready discretized by a nodal
method, we can imagine that the mathematica adjoint is required in the perturbation theory. Therefore,
obtaining the physicd adjoint solution is only meaningful when the physical adjoint is much easier to obtain
than the mathematical adjoint and it is S0 close to that of the mathematica adjoint that it might be used as an
approximation of the mathematica adjoint.

If the discontinuity factors introduced by the equivaence theory are not involved in a nodd method, the
physicd adjoint flux isrelatively easer to obtain than the mathematica adjoint flux. Since the shapes of two
adjoint fluxes have turned out to be very close for most nodd methods, the physicd adjoint flux is often
used as a good approximation. But it has been generdly perceived that, when the equivaence theory is
employed to dlow the flux to be discontinuous across the node boundary, it isimpossble or very difficult to
define the physica adjoint flux. In this work, athough we are till not sure of its good agreement to the
mathematica adjoint flux and its smplicity in obtaining, we successfully define the physicd adjoint flux by
dlowing the current, instead of the flux to be discontinuous across the node boundary.

The perturbation formula contains the inner product of gradients of the forward flux and the adjoint flux. It
has been recognized (Lawrence, 1984) that it would be inaccurate to use only the node-average forward
and adjoint fluxes in gpproximating the inner product. The accuracy can be maintained only when dl the
forward unknowns adopted in a specific nodd method and their adjoint partners are included in the
perturbation formula. Asindicated in the numerical test result section, the considerable mismatches between
the two adjoint fluxes at corner points are noted if the corner-point fluxes are adopted as noda unknowns
in the nodal method. Some mathematica adjoint fluxes a corner points often become negetive with very
amal absolute vaues, while the physica adjoint fluxes at the same corner-points are gill postive with the
magnitude of node-average adjoint fluxes. Therefore, it should be noted the use of the physica adjoint flux
as an gpproximation of the mathematicd adjoint flux may result in rdaively large errors in perturbation
caculations by employing such a nodd method. Moreover, since we can use the same dgorithm to solve
the forward flux and the mathematica adjoint flux, there is no reason to practicdly use the physicd adjoint
flux ingead of the mathematicd adjoint flux. This comes from the fact that trangposing even the very
complicated forward coupling equations involving other variables such as the transverse leskages in
addition to nodd fluxes can never become impossible and results in the same Structure of coupling
equations for the mathematica adjoint flux for most cases.

In this work, we developed the mathematical and the physical adjoint flux models for the Analytic Function
Expansion Noda (AFEN) method (Noh, 1994; Cho, 1995A) and its variations such as the Polynomia
Expansion Nodad (PEN) method and the AFEN/PEN hybrid nodal method (Cho, 1995C; Noh, 1996)
with the generd eguivadence theory in the hexagond geometry. The adjoint flux for the rectangular
geometry NEM was firgt sudied by Lawrence (Lawrence, 1984) and followed by Kim and Kim (Kim,
1996), and those for the hexagond geometry NEM by Yang, Tawo, and Khdil (Yang, 1993). Cho and
Hong (Cho, 1995B) have developed the adjoint flux modd for the AFEN method without the discontinuity
factorsin the rectangular geometry.



2 Adjoint Solutions of the AFEN-Type Nodal M ethods
2.1 Forward Equations
The diffuson equation for a hexagond node n shown in Figure 1 is given by

- D”fn(x,y)+8”fn(x,y)=kicnS’f‘fn(x,y), (1)

eff

where the hat ” on the neutron flux denotes the homogeneous flux, which is dlowed to be discontinuous
across node interfaces or corner points.

The detail derivation of the noda coupling equations for the AFEN-type nodd methods are described in
the references : Noh (1994) and Cho (1995A). The resultant coupling equations consst of three different
types of equations. the noda neutron balance equations to be solved for the node-average fluxes, the
interface current continuity equations for the interface fluxes, and the corner-point balance (CPB) equations
for the corner-point fluxes. Here, we retrieve the expressions for an interface current and for a corner-point
leskage which provides the foundations for al coupling equations:
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where the bar - or the tilde ~ on a quantity denotes the quantity averaged over the node volume or over an
interface, respectively, a and b are constant matrices given by the cross-sections of node n, and F is a

diagond discontinuity matrix. All the heterogeneous interface and corner-point fluxes without hats on them
are converted from their homogeneous partners using the relationships:

fo =Ff0 and £1, = Ff  for d=x,u,p and i=0,1.
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Fgure 1. Hexagond Noden Figure 2. geometry for the derivation of
noda coupling equations

Then, the noda neutron baance equation for node | shown in Figure 2 becomes :
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Thisequation is solved for the node-average flux.

The second coupling equation to be solved for the interface flux shared by nodes | and 1l can be obtained
by applying the current continuity condition across the interface :

‘Jll = Jlll (5)

Finaly, the coupling equation to be solved for the corner-point flux shared by nodes I, I1, and 111 comes
from the leakage balance around the corner point, which is given by
I‘ll +L1II +L1III :O (6)

The noda baance equation (4) and two other coupling equations resulted from the conditions (5) and (6)
are solved by an conventiond inner/outer iteration scheme.

2.2 Mathematical Adjoint Equations

The mathematica adjoint flux is the solution of the equations obtained by trangposing three different types
of the forward coupling equations.

The coefficient matrices in the coupling equations may be interpreted as the response matrices between

nodal unknowns. For example, the coefficient matrix on the corner-point flux f,in the noda coupling

equation for the node-average flux 1,
J—(b' +bl)F ) (7)



may be interpreted as the response of the corner-point flux f ;to the node-average flux 7 . A coefficient

matrix in the forward equations and its trangposed partner in the adjoint equations are completely opposte
inthe meaning of the response matrix. This means that the following matrix trangposed from the matrix (7)
will certainly become the coefficient matrix on the node-average adjoint flux 7 in the coupling equetion to

be solved for the corner-point adjoint flux f ; in the adjoint system.
243 (2}
s ORI ®)
S0, in the adjoint system, this matrix gppears at the position occupied by the matrix :
2al +a +b) +b!) ©

in the forward corner-point leakage equation (3). By reversng the meaning of its counter part (7) in the
forward flux euations, we can deduce the meaning of the trangposed coefficient matrix (8) as the response
of the node-average adjoint flux 7 to the corner-point adjoint flux 1 in the adjoint flux equetions.
Collecting the terms having  in them from &l the coupling equations for the interface fluxes and the

corner-point fluxes of node | and keeping the unknowns for which the coupling equations are solved, we
can build the coupling equation for the node-average adjoint flux :
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This equation will never contain the discontinuity factors, because dl the coefficient matrices of it @me
from theterms having 7, in the forward coupling equations.

Likewise, collecting the terms having the interface flux ¢ in al coupling equations for the forward noda

unknowns belonging to nodes | and 1l yidds the coupling equation for the adjoint flux at the interface
between nodes | and Il shown in Fgure 2:
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where the adjoint current is defined on an interface of node | shown in Figure 1 asfollows:
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The equation (11) has a form of an adjoint interface current discontinuity. Note that this equation will
contain the discontinuity factors of nodes | and |1 a the interface being evduated, the inverses of which Ift-
multiply al coefficient matrices. This seems natural, because dl the coefficient matrices of this equation
come from the terms containing 7, in the forward coupling equetions.

*
n

Similarly, the coupling equation for the corner-point adjoint flux becomes
(Fll )_lL*ll + (Fl“ )-lL*lll + (Flm )_lL*lm =0 (13)



by defining the adjoint corner-point leskage as
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Note that the equation (13) will have only the discontinuity factors of three nodes |, I1, and I11 at the corner
point.

(14)

The coupling equations for the mathematical adjoint fluxes are solved by the same iteration procedure for
the forward fluxes, snce they have the same dructure as those for the forward fluxes. Therefore, thar
implementationis straightforward.

2.3 Physical Adjoint Equations

As mentioned in the introduction, the mathemetica adjoint flux is required in perturbation theory. Therefore,
there is no reason to try to get the physical adjoint flux if the mathematical adjoint flux is essly obtained.
Here, however, we want to investigate how the physicd adjoint equations are drived when the discontinuity
factors are employed in nodd methods.

The adjoint diffuson equation which is the counter part of the forward diffuson equation (1) is given by

0, o+ (ST = s T 0y (15)
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The physicd adjoint flux is the solution of the coupling equations derived from this equation by the same
method as the forward flux. Therefore, if there is no discontinuity factor involved, the physicad adjoint is
eadlly obtained by trangposing the cross-sections.

When the discontinuity factors are adopted according to the equivaence theory, it is generdly known that
the physcd adjoint flux isimpossble or very difficult to obtain. Here, we successfully obtain the physica
adjoint flux for the AFEN-type nodd methods. Assume that we build three types of the coupling equations
for the mathematical adjoint fluxes from the adjoint diffuson equation. The coefficient matrices of these
equations have the reverse meanings in a response matrix sense to those of their forward counter parts,
since these equations are surely the equations for adjoint fluxes. For example, dl the coefficient matrices in
the coupling equation for the interface adjoint flux mean the responses of the unknowns comprising the
node-average, the interface, and the corner-point adjoint fluxes to the interface adjoint flux being evauated.
Then, their counter parts in the forward coupling equations are the responses of the interface flux to the
noda unknownsinvolved. So they surdy aredl right-multiplied by the inverses of the interface discontinuity
factors. Likewise the mathematicd adjoint case, this in turn, makes dl the coefficient matrices in the
interface adjoint flux equation eventudly to be left-multiplied by the interface discontinuity factors of the
nodes sharing the interface. The smilar discusson made on the other two coupling equations indicates us
that the node-average adjoint flux equation does not contain the discontinuity a al, and that the corner-
point adjoint flux equation only contains the corner-point discontinuity factors of the three nodes sharing the
corner point.



Recdling the forms of the mathematica goint equations in the previous section, this enables us to deduce
that, when the equivaence theory is employed, the physica adjoint flux is equivaent to the solution of the
adjoint diffuson equetion :

-D%nnw4gfmwdhthSWﬂuw> (16)

with the adjoint current discontinuity condition (not the flux discontinuity condition for the forward flux) and
with the adjoint leakage imbaance condition :

A

E)3 =63 (17)
(R )0y + (R ) + ()P, =0 (18)

where we omit the hat ~ on the adjoint flux because it is not discontinuous any more, but, instead, we put it
on the adjoint current and leskage. Physicaly, the current discontinuity a an interface and the leskage
imbaance a a corner point mean that there are singular sources or absorbers at the interface and at the

corner point, repectively.

The adjoint coupling equations derived from the adjoint diffusion equation (16) and the conditions of (17)
and (18) will dso have the same structure as their forward counter parts. This identical structure, again,
enables us to use the same agorithm for the forward flux.

2.4 Two Ajoint Solutions of FDM in the One-Dimensional Rectangular Geometry

To investigate the properties of two adjoint fluxes in the case that the equivaence theory is employed, we
compare them for FDM in the one-dimensiona rectangular geometry.

One can eadly derive the FDM expression for the forward current at the interface between node n and
node n+1 shown in Figure 3, asfollows.
- _ 2D n Dn+1
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Then, the forward equetion for the node-average fluxes becomes
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We write matrix operationson diffuson coefficients and discontinuity factors as scalar operations, because
they are diagona. Note that these equations are no longer symmetric, athough they are symmetric when no
discontinuity isinvolved.

With transposing Eq. (20), we can get the mathematical adjoint equation
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Deriving the physicd adjoint equation starts from approximating the interface current as
P 2D" (~* = )

nn+l f

(22)

Applying the interface adjoint current discontinuity condition given by

cn 17 _[En+ -1
Fr) '3 =) 3 (23)
solve it for the interface adjoint flux and current in terms of the node-average adjoint fluxes:
~.  _D"Rf, +D"™FT.,
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By integrating the adjoint diffuson eguation (16) over the node volume and substituting Eq. (25) in it, we
can get the physica adjoint equation which is completely identica to the mathematica adjoint equation (21).
In spite of asymmetricity of the FDM forward equations having the discontinuity factors, the physca
adjoint equation defined in the previous section becomes identica to the mathemetica adjoint flux.
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Figure 3. Array of one-dimensiond rectangular nodes
3 Numerical Test Result

A benchmarking test for the physica and the mathematica adjoint flux models presented in this paper was
performed for the core configuration |1 shown in Cho (1995A), whose results were reported elsewhere
(Noh, 1999). This core conssts of 151 heterogeneous hexagond fuel assemblies with five different types of
homogenized pincells whose pincel cross-sections are liged in the reference. The assembly
homogenizations are performed by single-assembly fine mesh FDM cd culations with zero current boundary
conditions on the outer surfaces of the assembly. The homogenized assembly cross-sections are shown in
Table . One can see the surface and the corner-point discontinuity factorsin the table.

Fgure 4 compares the core multiplication factor and the node-average adjoint fluxes for two adjoint cases :
the physicd adjoint and the mathematica adjoint. Here, one can see only a 0.003 % error in the effective



multiplication factor and a 0.1% maximum error in the node-average adjoint fluxes. This good agreement
tdls the congstency in the definition of the physical adjoint flux.

We aso found that the corner-point mathematica adjoint fluxes have dternating signs and very smal
absolute vaues, while the core-point physica adjoint fluxes are postive vaues with the magnitude of the
node-average adjoint fluxes. (This phenomenon is aso seen in the case that there is no discontinuity factor.)
Therefore, in spite of its congstency in definition, it does not seem that the physica adjoint flux can be used
as an gpproximation of the mathematica adjoint flux which is required in the perturbation theory.

Table 1. Homogenized Cross-sections of Each Assembly Type

™Pe| G| D) | Siam) | Swo(em) | nsiem) | TEEC | PEE
A 1 | 123099 | 0.0108167 | 0.0117134 | 0.0068032 | 0.995074 | 0.994444
2 | 0.43165 | 0.0793297 0.1124590 | 1.113090 | 1.125876
B 1 | 1.23996 | 0.0114860 | 0.0109755 | 0.0083914 | 0.995695 | 0.995319
2 | 0.42645 | 0.1000110 0.1546060 | 1.147650 | 1.161579
c 1 | 1.24486 | 0.0119430 | 0.0105623 | 0.0094394 | 0.996023 | 0.995788
2 | 042177 | 0.1137300 0.1826250 | 1.171450 | 1.185583
D 1 | 1.24567 | 0.0004831 | 0.0322555 | 0.0 1.0 1.0
2 | 0.25422 | 0.0157667 0.0 1.0 1.0
7.864 7.767
Kt 10.64 11.28
1.055882
1.055849
0.003

al Mathematical
Adjoint
Physical Adjoint

Fast

%Error %Error

Fgure4 Reaults of Adjoint FHux Caculations for Core Configuration |

4 Conclusion

To use the perturbation formulain the AFEN-type nodd caculations, we develop the models to calculate
the mathematica adjoint flux and the physica adjoint flux. By trangposing three kinds of the forward nodd
coupling equations, we derive the mathematica adjoint coupling equations with the coefficients whose
meanings in a response matrix sense are quite oppodite to those of the forward coupling equations.
Although the mathematical adjoint flux is required in the perturbation theory, we adso derive the physica



adjoint equations to disqudify the belief that it is impossble or nearly impossible to define the physica
adjoint flux when the discontinuity factors are employed in a noda method. The physical adjoint equeations
are derived from the adjoint diffuson equation with the adjoint current discontinuity conditions across the
interfaces ingtead of the flux discontinuity conditions in the forward equations. We proved that two adjoint
fluxes become identica for FDM, even when the discontinuity factors are involved.

The results of a numericd test show that the physicd adjoint flux defined here is condstent to the
mathematical adjoint flux even in the case that the interface and the corner-point discontinuity factors are
different. However, it is aso shown there are the consderable mismatches between two adjoint fluxes at
corner points. Therefore, in spite of its congstency, it does not seem that the physicd adjoint flux can be
used as an approximation of the mathematical adjoint flux which is required in the perturbation theory.
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