'99 추계 학술 발표회 논문집 한국 원자력 학회

합금원소 첨가에 따른 Zr-x(Nb, Sn, Cu) 이원계 합금의 부식 거동

Corrosion behavior of Zr-x(Nb, Sn and Cu) binary alloys

김명현, 이명호, 박상윤, 정용환

한국원자력 연구소 대전시 유성구 덕진동 150

위명용

충북대학교 충북 청주시 흥덕구 개신동 산48번지

요 약

핵연료 피복관용 신합금을 개발하기 위한 연구의 일환으로 이원계 합금인 2r-xNb, Sn 그리고 Cu 합금을 제조하여 합금원소가 부식에 미치는 영향을 조사하였다. 부식 실험은 360℃ water와 400℃ steam 그리고 360℃ LiOH 의 조건에서 mini-autoclave를 이용하여 수행하였다. Nb 와 Cu 의 경우 세가지 조건하에서 서로 비슷한 부식거동을 보였다. Sn 합금은 Nb과 Cu와는 다른 부식 거동을 보였다. Nb와 Cu는 대체로 그 함량이 증가함에 따라 내식성이 나빠지는 경향을 보였으 며, Sn은 고용량인 1.6wt%를 중심으로 고용량 이하에서는 Sn함량의 증가에 따라 부식특성이 나 빠졌으며 고용량 이상에서는 Sn함량의 증가에 따라 부식 특성이 좋아졌다. 특히, LiOH에서는 Nb나 Cu보다도 Sn이 첨가된 이원계합금의 부식저항성이 우수하게 나타났다.

Abstract

For the development of advanced zirconium alloys for nuclear fuel cladding, the corrosion behaviors of zirconium binary alloys were studied on the Zr-xNb, Zr-xSn, and Zr-xCu alloys. The corrosion test were performed in water at 360°C, steam at 400°C and LiOH at 360°C for 45 days. The corrosion behaviors of Zr-xNb was similar to that of Zr-xCu alloys. However, the corrosion behavior of Zr-xSn was different from Zr-xNb and Zr-xCu. The weight gain of Zr-xNb and Zr-xCu was increased with addition of alloying elements. When Sn is added to Zr matrix in range below the solubility limit, the corrosion resistance decrease with increasing Sn-content, while in the range over solubility limit, Sn has an adverse effect on the corrosion resistance. Especially, Zr-xSn alloys showed higher corrosion resistance than Zr-xNb and Zr-xCu alloys in LiOH solution.

Zirconium 이원계 합금은 원자력 발전소에서 피복관으로 Zr합금이 사용되기 시작하던 1950년대 부터 연구되어져 많은 기초자료를 갖게 되었다. 하지만 원자력 발전의 효율을 높이기 위해 가동되 는 환경은 핵연료 피복관등의 부속물들에게 많은 영향을 미치게 되었으며 특히, 부식에 악영향을 미치게 되었다. 이에 따라 많은 나라에서는 새로운 핵연료 피복관을 개발하게 되었다^[145]. 미국의 westinghouse사 에서 만든 ZIRLO라는 새로운 합금^{DD}으로부터 러시아, 일본, 스웨덴, 프랑스 등 많 은 원자력 발전의 소유국가에서 새로운 합금연구를 하게 되었다. 따라서 기존에 이용되고 있던 합 금원소로부터 보다 나은 성질을 얻어내기 위한 기초 자료가 요구되었다. 현재 가장 많이 사용되고 있는 원소들은 Sn과 Nb로서 러시아의 피복관(2r-1Sn-1Nb-0,4Fe)⁶⁰, 일본Mitsubishi사의 피복관 (Zr-0,5Sn-0,1Nb-0,2Fe-0,1Cr)¹⁷⁾, 그리고 스웨덴의 ABB-CE (Zr-0,3Nb-0,5Sn-0,4Fe-0,3 Cr, 2r-0.5Sn-0.5Fe-0.3Cr)^[8], ZIRLO (2r-1Nb-1Sn-0.1Fe) 등에서 볼 수 있듯이 많은 종류의 tslgudvlqhr관이 개발되고 있으며 일부 합금은 이미 성능이 우수한 것으로 입증되고 있다. Cu의 경우는 1950년대에 고온 가스로에 사용할 목적으로 많은 연구가 수행된바 있는데, 고온에서는 내 식성을 향상시키는 원소로 보고되고 있다.^[0,00] 따라서 본 연구에서는 Nb와 Sn 그리고 Cu 의 첨 가에 따른 체계적인 부식 특성을 평가하기 위하여 2원계 합금을 제조하여 부식 시험하고,표면 관 찰과 무게증가량을 측정하여 각각의 원소가 부식 특성에 미치는 영향을 평가하였으며,2원계 합금 에서의 부식거동으로부터 높은 내식성을 갖는 피복관재료를 개발하기 위한 최적의 함량을 도출하 고자 하였다.

2 실험방법

본 연구에서는 조성과 첨가합금에 따른 부식특성을 분석하기 위해서 2r-xNb, 2r-xSn 그리고 2r-xCu의 시편을 준비하였으며 이 시편들의 합금조성은 표1과 같다. 시편의 용해는 불순물의 편 석이나 합금조성의 불균질한 분포를 방지할 목적으로 5회에 걸쳐 VAR(Vacuum Arc Remelting) 방법을 이용하여 400g의 button형태로 제작을 하였다. 제조된 button형태의 시편은 합금조성의 균질화 영역범위인 1020℃에서 30분간 열처리를 한 후 β-quenching을 실시하였다. Hot Rolling 을 위해 590℃에서 30분 동안 열처리를 한 후 60%로 열간압연을 행했다. 1차 냉간압연과 2차 냉 간압연은 각각 50%로 행해 졌으며 각각의 냉간압연전에는 650℃에서 3시간동안 열처리를 실시 dku 조직을 재결정 시켰다. 그리고, 최종열처리에서는 완전한 재결정을 이루기 위해서 650℃에서 3시간 동안 열처리를 했다.

부식특성을 알아보기 위한 실험을 위해 시편은 10×20×1mm의 크기로 절단하여 만들었고 600 번과 1200번의 SIC연마지로 연마를 실시했다. 표면의 에칭을 위해서 HF(5%)+HNO₈(45%)+ H₂O(50%)의 혼합용액을 만들어 행했으며 부식실험은 ASTM G2-81의 절차에 의해 실시되었다. 실험분위기는 360℃ Water와 LiOH, 400℃ Steam에서 실시하였다.

무게 증가량을 측정하여 함량에 따른 부식 특성에 대한 연구를 실시 하였으며 각각의 시편에 대해 접사사진을 찍어 그 표면상태를 측정하였다. 각각의 시편에 대해 광학현미경(Optical Microphotography)촬영을 위해 Mounting하여 1200번까지 SIC연마지로 연마하였으며 HF(10%)+ HNO₃(45%)+H₂O(45%)의 혼합용액을 갖는 에칭액으로 에칭을 실시한 후 광학현미경관찰을 실시 하였다.

3. 실험결과 및 고찰

3.1 부식특성에 미치는 Nb의 영향

핵연료 피복관 재료로 사용되는 2r합금의 특성은 그 합금의 조성에 많은 영향을 받다. 특히 고 온/고압의 부식거동은 석출물 특성에 많은 영향을 받고 있다. 따라서 합금의 조성과 성분은 부식 특성에 있어서 중요한 요인으로 많은 연구의 대상이 되고 있다.

그림 1은 2r-xNb 2원계 합금에 대한 최종열처리 후의 미세조직을 광학현미경으로 관찰한 것이 다. 전체 연구되어진 조성중 0.2%, 1.0%, 그리고 2.0%Nb가 사용되었다. 이 조직들은 모두 재결정 화 되었으며 그 함량의 증가에 따라 조직이 미세화 되어지는 것을 볼 수 있다. 이것은 Nb함량이 증가함에 따라 재결정이 늦어지는 현상에서 기인한다고 생각된다. 일반적으로 Nb의 고용도는 연 구자들에 따라 다르게 보고되고 있는데 Cox 의 연구에 따르면 610℃에서 0.6wt,% 라고^{DD} 보고되 고 있다. 이 고용도를 지나는 1.0%Nb 와 2.0%Nb에서는 고용도 이전의 조건인 0.2%Nb보다도 그 결정립의 크기가 더욱 작게 나타나는 것을 볼 수 있으며 석출물도 많이 나타나는 것을 볼수 있다. 특히, 2.0%Nb쪽이 보다 많은 양의 석출물을 보여주고 있다. 즉, 석출물들에 의한 영향으로 결정립 의 성장이 많은 영향을 받는 다는 것으로 생각된다.

2r-xNb 2원계 합금에서 Nb 함량의 변화가 부식 거동에 미치는 영향을 조사하고자 여러 가지 조건에서 부식 실험을 하였다. 그 조건은 표 2에 나타나있다. 그림 4는 Nb첨가 2원계 합금에서 시 간과 조건에 따른 무게 증가량을 나타내는 것이다. 즉, 결정립이 미세화 됨에 따라 부식 특성이 나빠지는 것을 볼 수 있는데 이것은 결정립의 크기가 어느 정도 이상이 되어야 부식 특성이 좋아 진다는 연구^{D20}와 일치한다. 360℃ Water의 경우에는 함량의 증가와 함께 부식에 대한 저항성이 점차적으로 나빠지는 것으로 나타나고 있는데 이는 고용도 이하(0.05% ~0.2%)의 Nb 첨가시 그 내식성은 매우 우수하지만 0.2% 이상의 Nb을 첨가할 경우 내식성이 첨가량에 따라 감소한다는 Isobe의 연구^{D2}와도 일치한다. 이는 400℃ Steam에서도 비슷한 경우를 나타낸다. 하지만 0.2%Nb 의 경우에는 0.5%Nb 보다도 무게증가량이 더욱 높은 것을 보이고 있다. 이 현상은 360℃ LiOH 에서는 나타나지 않는 현상이다. LiOH의 경우에는 그 Li^{*}와 모재의 2^{r4*}반응으로 인해 순수 2irconium 보다 합금의 경우에 더욱 부식이 가속화 된다는 연구^{D3}와 일치하고 있다.

3.2 부식특성에 미치는 Sn의 영향

그림 2는 Sn의 2원계 합금에 대한 최종열처리 후의 미세조직을 관찰한 것이다. 최종 열처리 조 직은 부식 특성에 영향을 줄 수 있기 때문에 그 영향을 최소로 줄이기 위해서 재결정 온도이상인 650℃에서 열처리를 실시하였다. 그림에서 나타나는 것과 같이 모든 합금들은 재결정온도를 이루 었다. 결정립의 크기는 0.2wt.%와 1.0wt.%가 비슷한 크기를 보였지만 2.0wt.%에서는 보다 작은 결정립을 나타냈다. 이것은 2r-xNb의 경우와 마찬가지로 고용도(1.6wt.%)를 넘는 경우에 석출물 에 의해 그 재결정의 속도가 느려져 나타나는 현상으로 사료된다.

그림 5에서는 Sn의 첨가에 따라 무게가 증가하는 현상을 나타내고 있다. 360℃ Water나 400℃ Steam 의 경우에는 고용도 부위에서 심하게 부식이 가속화 되는 모습을 나타내고 있는데 이는 고 용도 주위(1,2wt,%~1,7wt,%) 에서는 모재에 함유된 불순물중 하나인 질소의 영향으로 화합물의 생성시켜 그 부식을 가속화 시킨다는 Janitschek의 연구¹⁴⁰와 일치하고 있다. 0,2%Sn에서는 Pure Zirconium과 거의 같은 무게 증가를 보여 주고 있는데 이것은 고용도가 높은 Sn의 특성에 따라 0,2%Sn이 모재에 큰 영향을 주지 못하고 Pure Zirconium과 유사한 거동을 한다고 생각된다. 36 0℃ LiOH의 경우에는 실험이 진행된 45일 까지의 data에서 Water 나 Steam에 비해 내식성이 높 은 것으로 나타나고 있다. 즉, BWR, LiOH 분위기에서 부식 실험한 결과 Sn 함량이 증가함에 따 라 부식 저항성이 우수하다는 연구^{DSD}와 일치하는 결과를 보여준다.

3.3 부식특성에 미치는 Cu의 영향

그림 3은 2r-xCu 2원계 합금에서 최종열처리 후의 결정립의 형태를 광학현미경으로 관찰한 것 이다. 고용도(0.2wt%)가 낮은 Cu의 경우 0.2%Cu~2.0%Cu까지 그 결정립의 크기는 대체로 미세 한 것으로 나타났다. 석출물도 0.2%Cu부터 관찰되었으며 그 석출물의 숫자는 Cu의 첨가에 따라 점차적으로 증가하였다. 결정립의 크기도 함량의 증가에 따라 점차적으로 감소하는 현상을 나타냈 다.

그림 6에서는 Zr-xCu 2원계 합금의 부식거동을 보여 주고 있다. 그 전반적인 현상은 Zr-xNb와 유사한 거동을 보였다. 하지만 무게증가량은 Zr-xNb의 증가량보다 훨씬 높은 것을 보여 주었다. 2원계로 첨가된 Cu의 경우에는 그 함량이 증가함에 따라 내식성이 낮아지는 모습을 나타내고 있 었으며 이는 Klepfer의 연구¹⁶⁰와 일치하고 있었다. Zr-xCu의 경우에도Zr-xNb와 같이 400℃ Steam에서 0.2%Cu의 합금의 경우 많은 무게 증가량을 보이고 있는데 이것의 mechanism에 관해 서는 더 많은 연구가 요구되고 있다.

4 겯 론

Zr-xNb, Zr-xSn 그리고 Zr-xCu 이원계 합금을 제조하여 부식특성을 실험하여 다음과 같은 결 론을 얻었다.

- 결정립의 크기는 원소들의 첨가에 따라 미세화 되었으며, 2r-xSn의 경우에는 그 고용도가 높 은 이유로 결정립의 크기가 2r-xNb나 2r-xCu의 경우보다 큰 것으로 나타났다. 2r-xCu는 낮은 고용도와 함께 전반적으로 결정립의 크기가 미세했다.
- 2, 2r-xNb 2원계 합금의 경우 Nb의 증가와 함께 내식성은 나빠졌다. 400℃ Steam의 경우에는 water와 LiOH 와는 다른 현상으로 0.2%Nb에서 높은 무게증가량을 나타내는 경향을 보였다.
- 3. Zr-xSn 2원계 합금의 경우 360℃ Water와 400℃ Steam에서 높은 무게증가량이 나타나는 범 위(1.2%Sn~1.7%Sn)를 나타냈다. 이 범위에서 400℃ Steam에서의 무게증가량이 상당히 높게 (2466 mg/dm²) 나타냈다. 360℃ LiOH의 경우에는 Water나 Steam에 비해 높은 내식성을 보여 주었다.
- 4. 부식특성면에서 2r-xCu는 좋지 않은 결과를 보여주었다. Cu가 첨가 될 수록 그 무게 증가량은 심하게 증가했으며 짧은 기간안에 Spall되었다. 360℃ LiOH의 경우에는 1,0%Cu~3,0%Cu 범위 에서 상당히 높은 무게증가량(639 mg/dm²)을 나타냈다.
- 5. 부식에 대한 내식성을 연구해본 결과 2r-xNb는 0.5%Nb와 1.0%Nb가 가장 좋은 부식특성을 보 였으며 2r-xSn의 경우에는 0.2%Sn과 3.0%Sn이 좋은 내식성을 보였다. 또한 2r-xCu에서는 0.5%Cu와 1.0%Cu가 높은 내식성을 나타냈다.

후 기

본 연구는 과학기술부의 원자력 연구개발사업의 일환으로 수행되었으며, 이에 감사드립니다.

참고문헌

- G. P. Sabol, G. R. Kilp, M. G. Balfour and E. Roberts : Zirconium in the Nuclear Industry, ASTM-STP 1023 (1989) 227.
- T. Isobe and Y. Matsuo : 9th Int. Symp. on Zirconium in the Nuclear Industry, Nov. 5-8, Kobe, Japan (1990) 5.
- D. Charquet et al. : International Topic Meeting on LWR Fuel Performance, Avignon, France, April 21-24 (1991).
- R. G. Reshetnikov and A. V. Nikulina : 9th Int. Symp. on Zirconium in the Nuclear Industry, Nov.5-8, Kobe (1990).
- M. Harada et al. : Zirconium in the Nuclear Industry, ASTM-STP 1132 (1991) 368.
- A. V. Nikulina : 9th Symp. on Zirconium in the Nuclear Industry, ASTM, Nov, Kobe, Japan (1990).
- T. Isobe and Y. Matsuo : Zirconium in the Nuclear Industry, ASTM-STP 1132 (1991) 346.
- B. Wadman, Z. Lai, H.-O. AnDren, A.-L. Nystrom, P.Rudling and H. Pettersson : Zirconium in the Nuclear Industry, ASTM-STP 1245 (1994) 579.
- Yoshiharu Shimomura : Damage Evolution in Neutron-irradiated Cu During neutron irradiation, Journal of Nuclear Materials 271&272 (1999) 230-235.
- J. K. Chakravartty and G. K. Dey : Characterization of hot deformation behaviour of Zr-2,5Nb-0,5Cu using processing maps, Sep. (1994)
- B. Cox, C. E. Lundin : Proceedings of the USAEC Symp. on Zirconium Alloy Development, Castlaewood, Pleasanton, Clifornia, Nov. 12-14 (1962) 9.
- 12, F. Garzarolli et al. : Zirconium in the Nuclear Industry, ASTM-STP 1245 (1994) 709,
- Y. H. Jeong et al. : Corrosion Characteristics and Oxide microstructures of Zircaloy-4 in aqueous alkali hydroxide solutions, Journal of nuclear materials, 270 (1999) 332.
- Janitschek, F. : Atomkern energie, 5 No. 6, (1960) 222.
- F. Garzaroll et al. : 11th Int. Symp. on Zirconium in the Nuclear Industry, Sept. 11-14 (1995) 850.
- Klepfer, H. H : Report NMI (1963) 1235.

Alloys	Elements	Zirconium
Zī—xNb	0,2 Nb	bal,
	0,5 Nb	bal,
	1,0 Nb	bal,
	1,5 Nb	bal,
	2,0 Nb	bal,
	3,0 Nb	bal,
Zr – xSn	0,2 Sn	bal,
	0,5 Sn	bal,
	1,0 Sn	bal,
	2,0 Sn	bal,
	3,0 Sn	bal,
Zr – xCu	0,2 Cu	bal,
	0,5 Cu	bal,
	1,0 Cu	bal,
	1,5 Cu	bal,
	2,0 Cu	bal,
	3,0 Cu	bal,

Table 1. Chemical composition of Zr-based alloys

Table 2 Conditions for corrosion test

No.	Temperature	Condition	Days
1	- 360 °C	Water	60 Days
2		LiOH	45 Days
3	400 °C	Steam	38 Days

Fig 1, Microstructures of Zr-xNb alloys after final annealing at 650°C for 2hr.

Fig 2, Microstructures of Zr-xSn alloys after final annealing at 650°C for 2hr.

Fig 3. Microstructures of Zr-xCu alloys after final annealing at 650°C for 2hr.

Fig 4. Corrosion behaviors of Zr-xNb binary alloys

Fig 4. Corrosion behaviors of Zr-xSn binary alloys

Fig 4. Corrosion behaviors of Zr-xCu binary alloys